How to build a coarse-grained model

Tanja Schilling, Albert-Ludwigs-Universität Freiburg

with F. Glatzel (Freiburg), H. Meyer (now Saarbrücken)

Soft Matter

• Suspensions, Gels, Glasses, Liquid Crystals

- Strongly non-linear response
- Slow relaxation
 —> non-equilibrium physics
- Entropy matters

http://www.euromost.info/air_travel/

Coarse-grained models:

Evolution equations for mesoscopic observables (e.g. local concentrations of solutes, order parameter fields)

or for macroscopic observables (e.g. viscosity, electrical conductivity)

Reminder: Basics of Statistical Mechanics

Microscopic World (classical)

N particles

positions \vec{r}^N

momenta \vec{p}^N

Fully characterized by Hamiltonian

$$H\left(\vec{r}^{\prime N},\vec{p}^{N}\right) = \sum_{i=1}^{N} \frac{1}{2m_{i}}\vec{p}_{i}\cdot\vec{p}_{i} + V\left(\vec{r}^{\prime N}\right)$$

Macroscopic World (equilibrium)

internal energy U

particle number N

volume V

Fully characterized by entropy

S = f(U, N, V)

Reminder: Basics of Statistical Mechanics

In thermal equilibrium, the probability to find a state $\Gamma = (\vec{r}^N, \vec{p}^N)$ is

$$\rho(\Gamma) = \frac{e^{-\beta H(\Gamma)}}{\int d\Gamma \, e^{-\beta H(\Gamma)}}$$

where $\beta := \frac{1}{k_B T}$.

Free energy

$$G(N, V, T) = -k_B T \ln \int \mathrm{d}\Gamma \ e^{-\beta H(\Gamma)}$$

Marcoscopic average of an observable $\mathbb{A}(\Gamma)$

$$\langle A \rangle_{N,V,T} = \frac{\int \mathrm{d}\Gamma \,\mathbb{A}(\Gamma) e^{-\beta H(\Gamma)}}{\int \mathrm{d}\Gamma \, e^{-\beta H(\Gamma)}}$$

We would like to "coarse-grain" dynamics, i.e.

To derive from the underlying microscopic theory an equation of motion for an observable averaged over non-equilibrium trajectories

... or at least approximate it numerically.

Multi-Scale Modelling

- Classical system, phase space coordinates Γ , Hamiltonian $H(\Gamma)$.
- Liouville equation for the dynamics of the microscopic degrees of freedom

$$\frac{\partial}{\partial t}\rho(\Gamma,t) = \{H,\rho\} = -\mathrm{i}\mathcal{L}\rho$$

- What is the equation of motion of a coarse-grained observable A(Γ)?
- Does it make sense to transfer notions from macroscopic, equilibrium thermodynamics (entropy, free energy etc.) to the non-equilibrium case?

Example I: Brownian Motion

Task: To find an equation of motion for the position of a solute particle.

• Einstein, Smoluchowski Diffusion equation for probability of position

$$\frac{\partial p(x,t)}{\partial t} = D \frac{\partial^2 p(x,t)}{\partial x^2}$$

D: diffusion constant.

• Langevin Stochastic differential equation for velocity

$$m\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = -\nu\mathbf{v} + \xi(t)$$

 ν : friction coefficient, $\langle \xi(t)\xi(t')\rangle = 2\nu k_B T \delta(t-t')$

• Descriptions are equivalent: $D\nu = k_B T$

A. Einstein, Annalen der Physik **322** (1905) 549-560, M. M. von Smoluchowski, Bulletin International de l'Académie des Sciences de Cracovie **3** (1906) 202-213) P. Langevin, Compt. Rendus **146** (1908) 530-533

Example II: Rates of Chemical Reactions

Task: To find the rate of a chemical reaction.

 $\text{Reaction: HO}^{\cdot} + \text{CH}_3\text{Br} \rightarrow [\text{HO}\text{---}\text{CH}_3\text{---}\text{Br}]^{\ddagger} \rightarrow \text{CH}_3\text{OH} + \text{Br}^{\cdot}$

Eyring equation for reaction rate:

$$k = \frac{k_{\rm B}T}{h} \exp\left(\frac{-\Delta G}{RT}\right)$$

H. Eyring, J. Chem. Phys. 3, 107 (1935), Source of image: Chem540grp1f08, CC BY-SA 3.0

Example III: Transition State Theory

Task: To find equations of motion for reaction coordinates.

Source: Silva, J., Cordeiro, Y., J. Bio. Chemistry 291, 15482 (2016) 10.1074/jbc.R116.733428.

Principle of "Quasi-Equilibrium" Coarse-Graining

- Pick a coarse-grained observable, a "reaction coordinate" A(Γ)
- Compute the equilibrium probability to find a certain value A_0 of $\mathbb{A}(\Gamma)$

$$\langle \rho(A_0) \rangle_{N,V,T} = \frac{\int \mathrm{d}\Gamma \,\delta\left(\mathbb{A}\left(\Gamma\right) - A_0\right) e^{-\beta H(\Gamma)}}{\int \mathrm{d}\Gamma \,e^{-\beta H(\Gamma)}}$$

- Interpret −k_BT ln(p(A)) as an "effective free energy" △G(A) or a "potential of mean force" W(A).
- Model the dynamics as a stochastic process in the free energy landscape.

 γ

In the literature on modelling, we often find an effective equation of motion of the form

$$m\ddot{A}_{t} = -\left.\frac{\mathsf{d}W(A)}{\mathsf{d}A}\right|_{A=A_{t}} - \gamma\dot{A}_{t} + \sqrt{2\gamma k_{B}T}\,\xi_{t}$$

- *A_t* : coarse-grained variable
- *m* : effective mass
- ξ_t : Gaussian white noise
 - : friction coefficient
- W(A) : "potential of mean force"
- The equation is constructed in **analogy to Newtonian mechanics**.
- The potential of mean force or effective free energy is defined as

$$W(A) := -k_B T \ln \left(\rho_A^{eq}(A) \right) =: \Delta G(A)$$

• γ is related to ξ_t by the fluctuation dissipation theorem

$$\langle \xi_t \xi_{t'} \rangle = 2 \gamma k_B T \delta(t - t')$$

Dots indicate time-derivatives, but this is a stochastic differential equation.

• Compare Langevin's equation for the velocity of a Brownian particle

$$m\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = -\nu\mathbf{v} + \xi(t)$$

to

$$m\ddot{A}_{t} = -\left.\frac{\mathsf{d}W(A)}{\mathsf{d}A}\right|_{A=A_{t}} - \gamma\dot{A}_{t} + \sqrt{2\gamma k_{B}T}\,\xi_{t}$$

This equation is a version of the Langevin Equation.

- Dynamics of coarse-grained observables is also often modelled by other versions of the Langevin equation.
- The overdamped case

$$\dot{\gamma}\dot{A}_t = -\left.\frac{\mathsf{d}\mathcal{W}(\mathcal{A})}{\mathsf{d}\mathcal{A}}\right|_{\mathcal{A}=\mathcal{A}_t} + \sqrt{2\gamma k_B T}\xi_t$$

• Phase-field models of phase transitions:

$$\frac{\partial \phi_t(\vec{r})}{\partial t} = -\gamma \frac{\delta G^{\text{PF}}[\phi(\vec{r})]}{\delta \phi} \bigg|_{\phi(\vec{r}) = \phi_t(\vec{r})} + \xi_t(\vec{r})$$

 $\phi_t(\vec{r})$: order parameter field, G^{PF} effective free energy.

Dynamic Density Functional Theory

$$\frac{\partial \rho_t(\vec{r})}{\partial t} = \gamma \nabla \cdot \left(\rho_t(\vec{r}) \nabla \left. \frac{\delta \mathbf{G}[\rho(\vec{r})]}{\delta \rho} \right|_{\rho(\vec{r}) = \rho_t(\vec{r})} \right)$$

 ρ : single particle density

Dissipative Particle Dynamics

Source: TS, Coarse-Grained Modelling Out of Equilibrium, accepted by Physics Reports (2022)

$$m_{i}\frac{d^{2}\vec{R}_{i}}{dt^{2}} = -\frac{\partial U(\vec{R}^{M})}{\partial \vec{R}}\bigg|_{\vec{R}=\vec{R}_{i}} - \sum_{j\neq i,j=1}^{M} \gamma \omega^{D}(R_{ij})(\vec{v}_{ij}\cdot\vec{e}_{ij})\vec{e}_{ij} + \sum_{j\neq i,j=1}^{M} \sigma \nu^{R}(R_{ij})\vec{e}_{ij}\xi_{ij}$$

 R_{ij} : distance between coarse-grained units, \vec{v}_{ij} : relative velocity, $\vec{e}_{ij} := \frac{R_i - R_j}{|\vec{R}_i - \vec{R}_i|}$.

Also frequently encountered in the literature is an integro-differential equation

$$m\ddot{A}_{t} = -\left.\frac{\mathsf{d}W(A)}{\mathsf{d}A}\right|_{A=A_{t}} - \int_{0}^{t}\mathsf{d}s \,K(t-s)\dot{A}_{s} + \xi_{t}$$

- K(t) : the "memory kernel"
- ξ_t : the "fluctuating force"

With the generalized fluctuation-dissipation theorem,

 $K(t) \propto \langle \xi_0 \xi_t \rangle$

Can we derive these equations?

Are they controlled approximations to the true dynamics?

We begin with the Liouville equation

$$\frac{\partial}{\partial t}\rho(\Gamma,t) = \{H,\rho\} = -\mathrm{i}\mathcal{L}\rho \quad ,$$

which entails the equation of motion of $\mathbb{A}(\Gamma_t)$

$$\frac{\mathrm{d}A_t}{\mathrm{d}t} = \frac{\mathrm{d}\mathbb{A}(\Gamma_t)}{\mathrm{d}t} = \dot{\Gamma}_t \cdot \frac{\partial\mathbb{A}}{\partial\Gamma}(\Gamma_t) = \mathrm{i}\mathcal{L}\mathbb{A}(\Gamma_t)$$

This is formally solved by

$$\frac{\mathrm{d}A_t}{\mathrm{d}t} = e^{t\mathrm{i}\mathcal{L}}\mathrm{i}\mathcal{L}\mathbb{A}(\Gamma_0)$$

٠

Projection Operator Formalisms

How do we get from the exact expression

$$\frac{\mathsf{d} A_t}{\mathsf{d} t} = \boldsymbol{e}^{ti\mathcal{L}}\mathsf{i}\mathcal{L}\mathbb{A}(\Gamma_0)$$

to an equation of motion of the form of the Langevin equation?

We define a projection operator \mathcal{P} on the space of phase space functions.

Using $\mathcal{Q} := 1 - \mathcal{P}$ and

$$e^{t\mathcal{L}}\circ = e^{t\mathcal{Q}i\mathcal{L}}\circ + \int_0^t ds \; e^{(t-s)i\mathcal{L}}\mathcal{P}i\mathcal{L}e^{s\mathcal{Q}i\mathcal{L}}\circ \ ,$$

we write the exact equation of motion as

$$\frac{\mathrm{d}A_t}{\mathrm{d}t} = \mathbf{e}^{ti\mathcal{L}}\mathcal{P}i\mathcal{L}\mathbb{A}(\Gamma_0) + \int_0^t \mathrm{d}s \, \mathbf{e}^{si\mathcal{L}}\mathcal{P}i\mathcal{L}\mathcal{Q}\mathbf{e}^{(t-s)i\mathcal{L}\mathcal{Q}}i\mathcal{L}\mathbb{A}(\Gamma_0) + \mathcal{Q}\mathbf{e}^{ti\mathcal{L}\mathcal{Q}}i\mathcal{L}\mathbb{A}(\Gamma_0)$$

Now the task is to **choose a suitable projection operator.** Depending on the choice, we will obtain different versions of the Langevin equation.

Mori defined a linear projection operator

$$\mathcal{P}^{\mathsf{M}}\mathbb{X}(\Gamma) \coloneqq \frac{(\mathbb{X}, \mathbb{A})}{(\mathbb{A}, \mathbb{A})}\mathbb{A}(\Gamma) \quad \text{with} \quad (\mathbb{X}, \mathbb{Y}) \coloneqq \int \ \mathsf{d}\Gamma \ \mathbb{X}(\Gamma)\mathbb{Y}(\Gamma)\rho_{\mathsf{N}}^{\mathsf{EQ}}(\Gamma)$$

Application of $\mathcal{P}^{M} \circ$ to $\frac{dA_{t}}{dt} = e^{ti\mathcal{L}}i\mathcal{L}\mathbb{A}(\Gamma_{0})$ produces

$$rac{\mathrm{d} A_t}{\mathrm{d} t} = \omega A_t + \int_0^t \, \mathrm{d} au \; K(t- au) A_ au + f_t$$

The linear, generalized Langevin Equation

with the drift $\omega := \frac{(i\mathcal{L}\mathbb{A},\mathbb{A})}{(\mathbb{A},\mathbb{A})}$, the fluctuating force $f_t := e^{t\mathcal{Q}_M i\mathcal{L}} \mathcal{Q}_M i\mathcal{L}\mathbb{A}(\Gamma_0)$ and the memory kernel

$$\mathcal{K}(t) \coloneqq \frac{\left(\mathsf{i}\mathcal{L}\boldsymbol{e}^{t\mathcal{Q}_{M}\mathsf{i}\mathcal{L}}\mathcal{Q}_{M}\mathsf{i}\mathcal{L}\mathbb{A},\mathbb{A}\right)}{(\mathbb{A},\mathbb{A})}$$

H. Mori, Prog. Theor. Phys 33, 423 (1965)

٠

Mori's Approach

Notes on the linear generalized Langevin equation

$$\frac{\mathsf{d} A_t}{\mathsf{d} t} = \omega A_t + \int_0^t \, \mathsf{d} \tau \, K(t-\tau) A_\tau + f_t$$

The equation is

- ... deterministic. To obtain the Langevin equation, we need a stochastic interpretation of f_t .
- ... non-local in time, resp. non-Markovian in the stochastic interpretation.
- ... linear.
- ... invariant under translations in time, i.e. it holds only in equilibrium.

The memory kernel is related to the fluctuating force

$$\mathcal{K}(t) \coloneqq \frac{\left(\mathrm{i}\mathcal{L}\boldsymbol{e}^{t\mathcal{Q}_{M}\mathrm{i}\mathcal{L}}\mathcal{Q}_{M}\mathrm{i}\mathcal{L}\mathbb{A},\mathbb{A}\right)}{(\mathbb{A},\mathbb{A})} = -\frac{(f_{0},f_{t})}{(\mathbb{A},\mathbb{A})}$$

This relation is often called the second fluctuation dissipation theorem.

Zwanzig's Approach

Zwanzig defined a non-linear projection operator

$$\mathcal{P}^{Z}\mathbb{X}(\Gamma) \coloneqq \frac{\int d\Gamma' \, \delta(\mathbb{A}(\Gamma') - \mathbb{A}(\Gamma))\mathbb{X}(\Gamma')}{\int d\Gamma' \, \delta(\mathbb{A}(\Gamma') - \mathbb{A}(\Gamma))}$$

and obtained the equation of motion

$$\frac{\partial \rho(A,t)}{\partial t} = -\frac{\partial}{\partial A} \left(\nu(A)\rho(A,t) \right) + \int_0^t d\tau \int dA' \frac{\partial}{\partial A} \left(W(A)K(A,A',\tau) \right) \frac{\partial}{\partial A'} \left(\frac{\rho(A',t-\tau)}{W(A')} \right)$$

with $W(A) := \int d\Gamma \, \delta(\mathbb{A}(\Gamma) - A)$ and the transport coefficients *v* and *K*. This equation is

- ... non-linear, deterministic and non-local in time.
- "...too complicated to be useful for any but the most formal applications" (R. Zwanzig)

```
R. Zwanzig, Phys. Rev. 124, 983 (1961)
```

How do we construct an equation of this form

$$m\ddot{A}_{t} = -\left.\frac{\mathsf{d}\boldsymbol{W}(\boldsymbol{A})}{\mathsf{d}\boldsymbol{A}}\right|_{\boldsymbol{A}=\boldsymbol{A}_{t}} - \boldsymbol{\gamma}\dot{\boldsymbol{A}}_{t} + \sqrt{2\boldsymbol{\gamma}k_{B}T}\,\boldsymbol{\xi}_{t} \quad ?$$

- Define two observables $\vec{\mathbb{A}} = (\mathbb{A}_1, \mathbb{A}_2)$
 - A₁ is **linear** in the generalized coordinates.
 - \mathbb{A}_2 is the time-derivative of \mathbb{A}_1 , i.e. $\vec{\mathbb{A}} = (\mathbb{A}, i\mathcal{L}\mathbb{A})$.
- Define a "Zwanzig-like projector"

$$\mathcal{P}\mathbb{X}(\Gamma) \coloneqq \frac{1}{\rho_{\mathbb{A}}\left(\vec{\mathbb{A}}(\Gamma)\right)} \int d\Gamma' \, \rho^{\text{eq}}(\Gamma') \, \mathbb{X}(\Gamma') \, \delta\left(\vec{\mathbb{A}}(\Gamma) - \vec{\mathbb{A}}(\Gamma')\right)$$

with the "relevant density"

$$\rho_{\mathbb{A}}\left(\vec{A}\right) \coloneqq \int \mathsf{d}\Gamma \, \rho^{\mathsf{eq}}(\Gamma) \; \delta\left(\vec{\mathbb{A}}(\Gamma) - \vec{\mathbb{A}}(\Gamma')\right)$$

(Recall the definition of the potential of mean force $W(A) = -k_B T \ln (\rho_A^{eq}(A))$.)

We insert these definitions into the equation of motion

$$\frac{d\vec{A_t}}{dt} = e^{ti\mathcal{L}}\mathcal{P}i\mathcal{L}\vec{\mathbb{A}}(\Gamma_0) + \int_0^t ds \, e^{si\mathcal{L}}\mathcal{P}i\mathcal{L}\mathcal{Q}e^{(t-s)i\mathcal{L}\mathcal{Q}}i\mathcal{L}\vec{\mathbb{A}}(\Gamma_0) + \mathcal{Q}e^{ti\mathcal{L}\mathcal{Q}}i\mathcal{L}\vec{\mathbb{A}}(\Gamma_0)$$

For the second component of the first term, we obtain

$$e^{ti\mathcal{L}}\mathcal{P}i\mathcal{L}\mathbb{A}_{2} \propto \frac{\partial}{\partial A_{1}} \underbrace{k_{B}T\ln\left(\rho_{A}(\vec{A})\right)}_{=:\mathcal{W}(\vec{A})}\Big|_{\vec{A}_{t}}$$

This is a derivative of a potential of mean force.

Details of the calculation can be found in Fabian Glatzel, TS, Europhysics Letters 136 36001 (2021).

Recall that we intend to construct

$$m\ddot{A}_{t} = -\left.\frac{\mathsf{d}W(A)}{\mathsf{d}A}\right|_{A=A_{t}} - \int_{0}^{t}\mathsf{d}s\ K(t-s)\dot{A}_{s} + \xi_{t}$$

Up to now we have got

$$\frac{\mathrm{d}A_{2,t}}{\mathrm{d}t} = \frac{\mathrm{d}^2 A_{1,t}}{\mathrm{d}t^2} = -\frac{1}{m} \frac{\partial W(\vec{A})}{\partial A_1} \Big|_{\vec{A}=\vec{A}_t} + \left(\int_0^t \mathrm{d}s \, e^{\mathrm{s}i\mathcal{L}} \mathcal{P}\mathrm{i}\mathcal{L}\mathcal{Q} e^{(t-s)\mathrm{i}\mathcal{L}\mathcal{Q}} \mathrm{i}\mathcal{L}\vec{A} + \mathcal{Q}e^{\mathrm{t}i\mathcal{L}\mathcal{Q}}\mathrm{i}\mathcal{L}\vec{A} \right)_2$$

- The other two terms are difficult to tackle by a Zwanzig projector.
- We construct a work-around. Note that

$$\mathcal{P}\mathbb{X}(\Gamma) = \frac{1}{\rho_{A}\left(\vec{\mathbb{A}}(\Gamma)\right)} \int d\Gamma' \, \rho^{eq}(\Gamma') \, \mathbb{X}(\Gamma') \, \delta\left(\vec{\mathbb{A}}(\Gamma) - \vec{A}\right) = \left. \frac{\left(\delta\left(\vec{\mathbb{A}} - \vec{A}\right), \mathbb{X}\right)}{\left(\delta\left(\vec{\mathbb{A}} - \vec{A}\right), 1\right)} \right|_{\vec{\mathbb{A}} = \vec{\mathbb{A}}(\Gamma)}$$

with the inner product

$$(\mathbb{X},\mathbb{Y})\coloneqq\int\mathrm{d}\Gamma\,\rho^{\mathrm{eq}}(\Gamma)\,\mathbb{X}(\Gamma)\mathbb{Y}(\Gamma)$$

We pick a **basis** $\{f_i(\vec{A})\}$ for the space of phase space functions, which depend on Γ solely through $\vec{A}(\Gamma)$, and write the Zwanzig-projector

$$\mathcal{P}\mathbb{X}(\Gamma) = \left. \frac{\left(\delta\left(\vec{\mathbb{A}} - \vec{\mathbb{A}}\right), \mathbb{X} \right)}{\left(\delta\left(\vec{\mathbb{A}} - \vec{\mathbb{A}}\right), 1 \right)} \right|_{\vec{\mathbb{A}} = \vec{\mathbb{A}}(\Gamma)}$$

as

$$\mathcal{P}\mathbb{X}(\Gamma) = \sum_{i=1}^{\infty} \left(f_i\left(\vec{\mathbb{A}}\right), \mathbb{X} \right) f_i\left(\vec{\mathbb{A}}\right) \quad .$$

Recall the definition by Mori:

$$\mathcal{P}^{\mathsf{M}}\mathbb{X} = rac{(\mathbb{A},\mathbb{X})}{(\mathbb{A},\mathbb{A})}\mathbb{A}$$

A Zwanzig projector can be expressed as a Mori-projector which projects onto infintely many observables!

Idea taken from: S. Izvekov JCP 138, 134106 (2013) and S. Kawai and T. Komatsuzaki JCP 134, 114523 (2011)

• We insert
$$\mathcal{P}\mathbb{X}(\Gamma) = \sum_{i} \left(f_i\left(\vec{\mathbb{A}}\right), \mathbb{X} \right) f_i\left(\vec{\mathbb{A}}(\Gamma)\right)$$
 in

$$\frac{\mathrm{d}\vec{A_t}}{\mathrm{d}t} = e^{ti\mathcal{L}}\mathcal{P}i\mathcal{L}\vec{\mathbb{A}}(\Gamma_0) + \int_0^t \mathrm{d}s \, e^{si\mathcal{L}}\mathcal{P}i\mathcal{L}\mathcal{Q}e^{(t-s)i\mathcal{L}\mathcal{Q}}i\mathcal{L}\vec{\mathbb{A}}(\Gamma_0) + \mathcal{Q}e^{ti\mathcal{L}\mathcal{Q}}i\mathcal{L}\vec{\mathbb{A}}(\Gamma_0)$$

• The 2nd component of the orange term is

$$\sum_{i=1}^{\infty} \int_{0}^{t} \mathrm{d}s \, K_{2,i}(t-s) f_{i}\left(\vec{A}_{s}\right) \quad \text{with} \quad K_{j,i}(t-s) = \left(f_{i}\left(\vec{\mathbb{A}}\right), \mathrm{i}\mathcal{L}\mathcal{Q}e^{(t-s)\mathrm{i}\mathcal{L}\mathcal{Q}}\mathrm{i}\mathcal{L}\mathbb{A}_{j}\right)$$

Compare to

$$m\ddot{A}_{t} = -\left.\frac{\mathsf{d}W(A)}{\mathsf{d}A}\right|_{A=A_{t}} - \int_{0}^{t} \mathsf{d}s \ K(t-s)\dot{A}_{s} + \xi_{t}$$

The memory term differs considerably.

Details in Fabian Glatzel, TS, Europhysics Letters 136 36001 (2021)

T. Schilling (Freiburg)

•

 Choose e.g. orthonormal polynomials in ^Ĩ as basis functions {*f_i*}. Then the memory term of the exact equation

$$\sum_{i=1}^{\infty} \int_{0}^{t} \mathrm{d} s \, \mathcal{K}_{2,i}(t-s) f_{i}\left(\vec{A}_{s}\right) \quad \text{with} \quad \mathcal{K}_{j,i}(t-s) = \left(f_{i}\left(\vec{\mathbb{A}}\right), \mathrm{i} \mathcal{L} \mathcal{Q} e^{(t-s)\mathrm{i} \mathcal{L} \mathcal{Q}} \mathrm{i} \mathcal{L} \mathbb{A}_{j}\right)$$

contains powers $(A_s)^n$ and $(\dot{A}_s)^n$ to any order **n** – rather than just $K(t-s)\dot{A}_s!$

Even if there is time-scale separation at all orders

$$\mathcal{K}_{j,i}(t-s) \propto \delta(t-s) =: \gamma_{i,j} \ \delta(t-s)$$
 ,

we obtain

$$m\ddot{A}_{t} = -\left.\frac{\mathsf{d}W(A)}{\mathsf{d}A}\right|_{A=A_{t}} - \sum_{i=1}^{\infty}\gamma_{2,i} f_{i}\left(A_{s},\dot{A}_{s}\right) + \varepsilon_{t}$$

rather than

$$m\ddot{A}_{t} = -\left.\frac{\mathsf{d}W(A)}{\mathsf{d}A}\right|_{A=A_{t}} - \gamma\dot{A}_{t} + \sqrt{2\gamma k_{B}T}\,\xi_{t}$$

Details in Fabian Glatzel, TS, Europhysics Letters 136 36001 (2021)

Also recall that most modellers assume

 $K(t) \propto \langle \xi_0 \xi_t \rangle$

• We define a short-hand for the third term

$$ec{arepsilon_t} \coloneqq \mathcal{Q} \boldsymbol{e}^{t \mathrm{i} \mathcal{L} \mathcal{Q}} \mathrm{i} \mathcal{L} ec{\mathbb{A}}$$

As we used a linear projection operator

$$\mathbf{K}_{j,i}(t) = -\left(i\mathcal{L}f_{i}\left(\vec{\mathbb{A}}\right), \mathcal{Q}\mathbf{e}^{ti\mathcal{L}\mathcal{Q}}i\mathcal{L}\mathbb{A}_{j}\right) = -\left(i\mathcal{L}f_{i}\left(\vec{\mathbb{A}}\right), \vec{\varepsilon_{j,t}}\right)$$

• This brings us close to a **fluctuation-dissipation theorem** but not quite there...

$$\mathbf{K}_{j,i}(t) = -\left(\mathrm{i}\mathcal{L}f_{i}\left(\vec{\mathbb{A}}\right), \vec{\varepsilon}_{j,t}\right) = -\left\langle \varepsilon_{j,t}\left(\vec{\varepsilon}_{0} \cdot \left.\frac{\mathrm{d}f_{i}(\vec{\mathbb{A}})}{\mathrm{d}\vec{\mathbb{A}}}\right|_{\vec{\mathbb{A}}=\vec{\mathbb{A}}(\Gamma_{0})}\right)\right\rangle$$

i.e.

$$K_{2,1}(t) \neq \langle \varepsilon_{2,0} \varepsilon_{2,t} \rangle$$
 !

Fabian Glatzel, TS, Europhysics Letters 136 36001 (2021)

The Non-linear Generalized Langevin Equation

In summary, we obtained an equation of the form

$$m\ddot{A}_{t} = -\left.\frac{\mathrm{d}W(A)}{\mathrm{d}A}\right|_{A=A_{t}} - \sum_{i=1}^{\infty}\int_{0}^{t}\mathrm{d}s\,K_{i}(t-s)f_{i}\left(A_{s},\dot{A}_{s}\right) + \varepsilon_{t}$$

rather than

$$\left. \ddot{\mathsf{MA}}_{t} = - \left. \frac{\mathsf{d} W(A)}{\mathsf{d} A} \right|_{A=A_{t}} - \int_{0}^{t} \mathsf{d} s \, K(t-s) \dot{A}_{s} + \xi_{t}$$

- The exact equation contains all powers of A_s and $\dot{A_s}$ in the memory term.
- The expansion in {*f_i*} is not an expansion in a small parameter. Thus the memory term cannot simply be truncated after the linear term.
- A potential of mean force is obtained only if the coarse-grained variable is linear in the generalized coordinates.
- Stochastic interpretation of ε_t is difficult due to lacking FDT.

Non-Equilibrium

- So far we have not allowed for time-dependent external forces.
 We only discussed equilibrium dynamics and relaxation into equilibrium.
- In the case of a time-dependent Liouvillian iL(t) observables evolve according to

$$\frac{\mathrm{d}A_t}{\mathrm{d}t} = U(0,t) \,\mathrm{i}\mathcal{L}(t) \,\mathbb{A}(\Gamma_0)$$

with

$$U(0,t)\circ = \exp_{-}\left(\int_{0}^{t} \mathrm{d}t' \, \mathrm{i}\mathcal{L}(t')\circ\right) = 1 + \sum_{n=1}^{\infty} \int_{0}^{t} \mathrm{d}t_{1} \cdots \int_{0}^{t_{n-1}} \mathrm{d}t_{n} \, \mathrm{i}\mathcal{L}(t_{n}) \cdots \mathrm{i}\mathcal{L}(t_{1})\circ$$

Again, we split the equation of motion and choose a suitable projector

$$\frac{\mathrm{d} A_t}{\mathrm{d} t} = U(0,t) \left[\mathcal{P}(t) \ \mathrm{i} \mathcal{L}(t) \mathbb{A}(\Gamma_0) + \mathcal{Q}(t) \ \mathrm{i} \mathcal{L}(t) \mathbb{A}(\Gamma_0) \right]$$

Note: $\mathcal{P}(t)$ is allowed to depend on time.

S. Nordholm, *Nonlinearities and fluctuations in microscopic transport theory*, Dissertation, U. Maryland (1972) Grabert, H. *Projection Operator Techniques in Nonequilibrium Statistical Mechanics*, Springer 1982

A. Latz J. Phys. Condens. Mat. 12 6252 (2000)

The Linear, Non-stationary GLE

One possible approach is to use a linear ("Mori"-type) projector

$$\mathcal{P}(t)\mathbb{X} = \frac{(\mathbb{X},\mathbb{A})_t}{(\mathbb{A},\mathbb{A})_t}\mathbb{A}$$

with the inner product

$$(\mathbb{X},\mathbb{Y})_t = \int \mathrm{d}\Gamma \rho_0(\Gamma) \ (U(0,t)\mathbb{X}(\Gamma)) (U(0,t)\mathbb{Y}(\Gamma))$$

This yields the

linear, non-stationary, Generalized Langevin Equation

$$\frac{\mathrm{d}A_t}{\mathrm{d}t} = \omega(t)A_t + \int_0^t \mathrm{d}\tau \, \mathbf{K}(t,\tau)A_\tau + \varepsilon_{0,t}$$

H. Meyer, Th. Voigtmann, TS, J. Chem. Phys. 147, 214110 (2017), J. Chem. Phys. 150, 174118 (2019)

$$\frac{\mathrm{d}\boldsymbol{A}_t}{\mathrm{d}t} = \omega(t)\boldsymbol{A}_t + \int_0^t \mathrm{d}\tau \boldsymbol{K}(t,\tau)\boldsymbol{A}_\tau + \varepsilon_{0,t}$$

Due to the linearity, there is a generalized fluctuation-dissipation theorem

$$\mathcal{K}(t,\tau) = -\frac{\langle \varepsilon_{0,t}\varepsilon_{0,\tau}\rangle}{\langle |\mathcal{A}_t|^2 \rangle}$$

This equation is exact.

It can be used to coarse-grain systems out of thermal equilibrium in practice, see e.g.

H. Meyer et al., Europhysics Letters 128, 40001 (2019)H. Meyer et al., Advanced Theory and Simulations 4, 2000197 (2020)

The Non-Linear Non-Equilibrium Case

- Include time as a coordinate $\Gamma^a = (\Gamma, t)$.
- Define Liouvillian on this "augmented" phase space

$${\sf i}{\cal L}^{a}\circ={\dot{\Gamma}}^{a}(\Gamma^{a})\cdotrac{\partial}{\partial\Gamma^{a}}\circ$$

Observables evolve according to

$$A_t(\Gamma^{a}) = \exp(i\mathcal{L}^{a}t) \mathbb{A}^{a}(\Gamma^{a})$$

Define inner product

$$\left(\mathbb{X}^{\mathrm{a}},\mathbb{Y}^{\mathrm{a}}
ight)^{\mathrm{a}}_{t}=\int\mathsf{d}\mathsf{\Gamma}^{\mathrm{a}}\;
ho^{\mathrm{a}}(\mathsf{\Gamma}^{\mathrm{a}},t)\;\mathbb{X}^{\mathrm{a}}(\mathsf{\Gamma}^{\mathrm{a}})\mathbb{Y}^{\mathrm{a}}(\mathsf{\Gamma}^{\mathrm{a}})$$

Define Zwanzig projector

$$\mathcal{P}(t)\mathbb{X}^{\mathsf{a}}(\Gamma^{\mathsf{a}}) = \frac{\int \mathsf{d}\Gamma^{\mathsf{a}'}\rho^{\mathsf{a}}(\Gamma^{\mathsf{a}'},t)\,\delta(\mathbb{A}^{\mathsf{a}}(\Gamma^{\mathsf{a}'}) - \mathbb{A}^{\mathsf{a}}(\Gamma^{\mathsf{a}}))\,\mathbb{X}^{\mathsf{a}}(\Gamma^{\mathsf{a}'})}{\int \mathsf{d}\Gamma^{\mathsf{a}'}\,\rho^{\mathsf{a}}(\Gamma^{\mathsf{a}'},t)\,\delta(\mathbb{A}^{\mathsf{a}}(\Gamma^{\mathsf{a}'}) - \mathbb{A}^{\mathsf{a}}(\Gamma^{\mathsf{a}}))}$$

The Non-Linear Non-Equilibrium Case

- As before, define a basis $\{f_i^a(\mathbb{A}^a, \tau)\}$.
- Now the basis depends on time

$$ig(f^{\mathrm{a}}_{i}(\mathbb{A}^{\mathrm{a}}, au),f^{\mathrm{a}}_{j}(\mathbb{A}^{\mathrm{a}}, au)ig)_{t}=\delta_{i,j}\quad orall t$$
 .

Again, Zwanzig projector can be written as

$$\mathcal{P}(t)\mathbb{X}^{\mathrm{a}}(\Gamma^{\mathrm{a}}) = \sum_{i=1}^{\infty} \left(f_{i}^{\mathrm{a}}(\mathbb{A}^{\mathrm{a}}(\Gamma^{\mathrm{a}}), au), \mathbb{X}^{\mathrm{a}}(\Gamma^{\mathrm{a}\prime})
ight)_{t} f_{i}^{\mathrm{a}}(\mathbb{A}^{\mathrm{a}}(\Gamma^{\mathrm{a}}), t)$$

• This produces an equation of motion of the form

$$rac{\mathsf{d} \mathcal{A}_t}{\mathsf{d} t} = \sum_{i=0}^\infty \left(\omega_i(t) f^{\mathrm{a}}_i(\mathcal{A}_t,t) + \int_0^t \mathsf{d} s \, \mathcal{K}_i(t,s) \, f^{\mathrm{a}}_i(\mathcal{A}_s,s)
ight) + arepsilon_t \quad ,$$

which **differs considerably** from the coarsed-grained models typically used for active matter, biomolecules and other non-equilibrium systems.

- We discussed equations of motion for coarse-grained observables.
- We recalled the projection operator formalisms by Mori and Zwanzig.
- Versions of the Langevin equation, which contain a potential of mean force (i.e. a non-linear drift term), also require a non-linear friction term. This statement holds true, even if there is time-scale separation.
- When there is a potential of mean force, there is in general no fluctuation-dissipation theorem.
- We showed how to use projection operator formalisms to construct coarse-grained models for systems with explicitly time-dependent Liouvillians.

- We had very useful discussions with H. Meyer, T. Franosch, T. Voigtmann, F. Höfling and F. Coupette.
- The project is supported by the German Research Foundation (DFG), Projects No. 430195928 and 431945604 (FOR 5099 P4).

See also

F. Glatzel, TS, Europhysics Letters **136** 36001 (2021)

F. Glatzel, TS, J. Chem. Phys. **154**, 174101 (2021)

- H. Meyer, Th. Voigtmann, TS, J. Chem. Phys. 147, 214110 (2017)
- H. Meyer, Th. Voigtmann, TS, J. Chem. Phys. 150, 174118 (2019)

H. Meyer et al., Europhysics Letters 128, 40001 (2019)

H. Meyer et al., Advanced Theory and Simulations 4, 2000197 (2020)

And for a review on coarse-graining

TS, Coarse-grained modelling out of equilibrium, https://arxiv.org/abs/2107.09972