calque

Workshops

Energy Landscape of Solids: from (hypothetical) topologies to material properties

July 22, 2008 to July 25, 2008
Location : CECAM-HQ-EPFL, Lausanne, Switzerland
   EPFL on iPhone
   Visa requirements

Organisers

  • Martijn A. Zwijnenburg (University College London, United Kingdom)
  • Scott Woodley (University College London, United Kingdom)

Supports

   CECAM

Description

To predict which distinct polymorphs of a material (e.g. SiO2 or ZnO) are likely to be formed during synthesis is, one might argue, the holy grail of computational solid state chemistry. This would not only allow one to rationalise synthesis routes towards a particular polymorph and highlight promising areas of the periodic table for experimental exploration but also provide insight as to whether a certain desired property (e.g. a large pore-size in the case of nanoporous zeolites) is obtainable for a given chemical composition. In practice this is a challenging problem as besides thermodynamics it requires an accurate calculation of nucleation and growth kinetics - something that is in principle possible, but currently computationally intractable for all but the simplest systems due to the inherent complexity and/or long simulations times required. However, even when one ignores kinetic issues it is still possible to make very relevant predictions about the fate of polymorphs during synthesis. Through a careful calculation of a material’s (free) energy landscape one can derive the material’s phase diagram, showing which polymorphs are thermodynamically stable for a given pressure and temperature. Moreover, one can then characterise metastable polymorphs in terms of their (free) energy difference with the stable polymorph and the number of other metastable polymorphs close lying in (free) energy. Finally, one can prepare databases of such hypothetical (metastable) polymorphs for a given chemical composition. To date such studies have been mostly limited to simple alkali salts and silica (including siliceous zeolites) but potentially this methodology can be applied to materials formed from the complete periodic table. Proof of the latter is the very recent theoretical work into polymorphism of such systems as AlF3, SiS2 and ZnO.

References

[1] M.A. Zwijnenburg, F. Cora, R.G. Bell <I>Dramatic Differences between the Energy Landscapes of SiO2 and SiS2 Zeotype Materials.</I>, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY <B>129</B> 12588 (2007) <BR><BR> [2] S.T. Bromley <I>A computational study into the viability of new molecular materials polymorphs based on fully-coordinated inorganic nanoclusters.</I>, CRYSTENGCOMM <B>9</B> 463 (2007) <BR><BR> [3] M.H.F. Sluiter <I>Lattice stability prediction of elemental tetrahedrally close-packed structures.</I>, ACTA MATERIALIA <B>55</B> 3707 (2007) <BR><BR> [4] M.A. Zwijnenburg, F. Cora, R.G. Bell <I>On the performance of DFT and interatomic potentials in predicting the energetics of (three-membered ring-containing) siliceous materials.</I>, JOURNAL OF PHYSICAL CHEMISTRY B <B>111</B> 6156 (2007) <BR><BR> [5] J.C. Schoen, I.V. Pentin, M. Jansen <I>Ab initio computation of the low-temperature phase diagrams of the alkali metal iodide-bromides.</I>, JOURNAL OF PHYSICAL CHEMISTRY B <B>111</B> 3943 (2007) <BR><BR> [6] S.M. Woodley <I>Engineering microporous architectures: combining evolutionary algorithms with predefined exclusion zones.</I>, PHYSICAL CHEMISTRY CHEMICAL PHYSICS <B>9</B> 1070 (2007) <BR><BR> [7] G. Thimm, B. Winkler <I>Net topologies, space groups, and crystal phases.</I>, ZEITSCHRIFT FUR KRISTALLOGRAPHIE <B>221</B> 749 (2006) <BR><BR> [8] G.A. Tribello, B. Slater, C.G. Salzmann <I>A blind structure prediction of ice XIV.</I>, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY <B>128</B> 12594 (2006) <BR><BR> [9] A. Le Bail, F. Calvayrac <I>Hypothetical AlF3 crystal structures.</I>, JOURNAL OF SOLID STATE CHEMISTRY <B>179</B> 3159 (2006) <BR><BR> [10] A.W.C. van den Berg, M.A. Zwijnenburg, S.T. Bromley, E. Flikkema, R.G. Bell, J.C. Jansen, J. Schoonman <I>Comparing the influence of framework type on H-2 absorption in hypothetical and existing clathrasils: a grand canonical Monte Carlo study.</I>, JOURNAL OF MATERIALS CHEMISTRY <B>16</B> 3285 (2006) <BR><BR> [11] S.A. Wells, M.D. Foster, M.M.J. Treacy <I>A simple geometric structure optimizer for accelerated detection of infeasible zeolite graphs.</I>, MICROPOROUS AND MESOPOROUS MATERIALS <B>93</B> 151 (2006) <BR><BR> [12] D.J. Earl, M.W. Deem <I>Toward a database of hypothetical zeolite structures.</I>, INDUSTRIAL &amp; ENGINEERING CHEMISTRY RESEARCH <B>45</B> 5449 (2006) <BR><BR> [13] Z. Cancarevic, J.C. Schoen, M. Jansen <I>Stability of alkali-metal oxides as a function of pressure: Theoretical calculations.</I>, PHYSICAL REVIEW B <B>73</B> 224114 (2006) <BR><BR> [14] C. Mellot-Draznieks, G. Ferey <I>Assembling molecular species into 3D frameworks: Computational design and structure solution of hybrid materials.</I>, PROGRESS IN SOLID STATE CHEMISTRY <B>33</B> 187 (2005) <BR><BR> [15] M.Jansen, J.C. Schoen <I>&quot;Design&quot; in chemical synthesis - An illusion?</I>, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION <B>45</B> 3406 (2006) <BR><BR> [16] J. Dutour, G. Ferey, C. Mellot-Draznieks <I>Structures and energetics of open-framework germanates; Exploration of hypothetical zeolitic GeO2 structures based on D4R units.</I>, SOLID STATE SCIENCES <B>8</B> 241 (2006) <BR><BR> [17] J.C. Wojdel, M.A. Zwijnenburg, S.T. Bromley <I>Magic silica clusters as nanoscale building units for super-(tris)tetrahedral materials.</I>, CHEMISTRY OF MATERIALS <B>18</B> 1464 (2006) <BR><BR> [18] M.D. Foster, M.M.J. Treacy, J.B. Higgins, I. Rivin, E. Balkovsky, K.H. Randall <I>A systematic topological search for the framework of ZSM-10.</I>, JOURNAL OF APPLIED CRYSTALLOGRAPHY <B>38</B> 1028 (2005) <BR><BR> [19] A. Simperler, M.D. Foster, O.D. Friedrichs, R.G. Bell, F.A.A. Paz, FAA, J. Klinowski <I>Hypothetical binodal zeolitic frameworks.</I>, ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE <B>61</B> 263 (2005) <BR><BR> [20] Z. Cancarevic, J.C. Schoen, M. Jansen <I>Prediction of possible high-pressure phases of Cu3N.</I>, ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE <B>631</B> 1167 (2005) <BR><BR> [21] H. Kabbour, L. Cario, F. Boucher <I>Rational design of new inorganic compounds with the ZrSiCuAs structure type using 2D building blocks.</I>, JOURNAL OF MATERIALS CHEMISTRY <B>15</B> 3525 (2005) <BR><BR> [22] A. Le Bail <I>Inorganic structure prediction with GRINSP.</I>, JOURNAL OF APPLIED CRYSTALLOGRAPHY <B>38</B> 389 (2005) <BR><BR> [23] L. Cario, H. Kabbour, A. Meerschaut <I>Designing new inorganic compounds from 2D building blocks.</I>, CHEMISTRY OF MATERIALS <B>17</B> 234 (2005) <BR><BR> [24] C. Mellot-Draznieks, J. Dutour, G.R. Ferey <I>Hybrid organic-inorganic frameworks: Routes for computational design and structure prediction.</I>, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION <B>43</B> 6290 (2004) <BR><BR> [25] J.C. Schoen <I>Enthalpy landscapes of the earth alkaline metal oxides.</I>, ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE <B>630</B> 2354 (2004) <BR><BR> [26] M.M.J. Treacy, I. Rivin, E. Balkovsky, K.H. Randall, M.D. Foster <I>Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs.</I>, MICROPOROUS AND MESOPOROUS MATERIALS <B>74</B> 121 (2004) <BR><BR> [27] R.T. Strong, C.J. Pickard, V. Milman, G. Thimm, B. Winkler <I>Systematic prediction of crystal structures: An application to sp(3)-hybridized carbon polymorphs.</I>, PHYSICAL REVIEW B <B>70</B> 045101 (2004) <BR><BR> [28] J.C. Schoen, Z. Cancarevic, M. Jansen <I>Structure prediction of high-pressure phases for alkali metal sulfides.</I>, JOURNAL OF CHEMICAL PHYSICS <B>121</B> 2289 (2004) <BR><BR> [29] S.M. Woodley, P.D. Battle, J.D. Gale, C.R.A. Catlow <I>Prediction of inorganic crystal framework structures - Part 1: Using a genetic algorithm and an indirect approach to exclusion zones.</I>, PHYSICAL CHEMISTRY CHEMICAL PHYSICS <B>6</B> 1815 (2004) <BR><BR> [30] S.M. Woodley <I>Prediction of inorganic crystal framework structures - Part 2 - Using a genetic algorithm and a direct approach to exclusion zones.</I>, PHYSICAL CHEMISTRY CHEMICAL PHYSICS <B>6</B> 1823 (2004) <BR><BR> [31] M.D. Foster, A. Simperler, R.G. Bell, O.D. Friedrichs, F.A.A. Paz, J. Klinowski <I>Chemically feasible hypothetical crystalline networks.</I>, NATURE MATERIALS <B>3</B> 234 (2004) <BR><BR> [32] D. Fischer, Z. Cancarevic, J.C. Schoen, M. Jansen <I>Synthesis and structure of K3N.</I>, ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE <B>630</B> 156 (2004) <BR><BR> [33] A. Simperler, M.D. Foster, R.G. Bell, J. Klinowski <I>Hypothetical uninodal zeolite structures: Comparison of AlPO4 and SiO2 compositions using computer simulation.</I>, JOURNAL OF PHYSICAL CHEMISTRY B <B>108</B> 869 (2004) <BR><BR> [34] S.M. Woodley, C.R.A. Catlow, P.D. Battle, J.D. Gale <I>The prediction of inorganic crystal framework structures using excluded regions within a genetic algorithm approach.</I>, CHEMICAL COMMUNICATIONS <B></B> 22 (2004) <BR><BR> [35] J.C. Schoen, M.A.C. Wevers, M. Jansen <I>'Entropically' stabilized region on the energy landscape of an ionic solid.</I>, JOURNAL OF PHYSICS-CONDENSED MATTER <B>15</B> 5479 (2003) <BR><BR> [36] M.D. Foster, O.D. Friedrichs, R.G. Bell, F.A.A. Paz, J. Klinowski <I>Structural evaluation of systematically enumerated hypothetical uninodal zeolites.</I>, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION <B>42</B> 3896 (2003) <BR><BR> [37] C. Mellot-Draznieks, S. Girard, G. Ferey <I>Novel inorganic frameworks constructed from double-four-ring (D4R) units: Computational design, structures, and lattice energies of silicate, aluminophosphate, and gallophosphate candidates.</I>, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY <B>124</B> 15326 (2002) <BR><BR> [38] C. Mellot-Draznieks, S. Girard, G. Ferey, J.C. Schoen, Z. Cancarevic, M. Jansen <I>Computational design and prediction of interesting not-yet-synthesized structures of inorganic materials by using building unit concepts.</I>, CHEMISTRY-A EUROPEAN JOURNAL <B>8</B> 4103 (2002) <BR><BR> [39] J.C. Schoen, M. Jansen <I>Determination, prediction, and understanding of structures, using the energy landscapes of chemical systems - Part III.</I>, ZEITSCHRIFT FUR KRISTALLOGRAPHIE <B>216</B> 361 (2001) <BR><BR> [40] J.C. Schoen, M. Jansen <I>Determination, prediction, and understanding of structures, using the energy landscapes of chemical systems - Part I.</I>, ZEITSCHRIFT FUR KRISTALLOGRAPHIE <B>216</B> 307 (2001) <BR><BR> [41] M.A.C Wevers, J.C. Schoen, M. Jansen <I>Characteristic regions on the energy landscape of MgF2.</I>, JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL <B>34</B> 4041 (2001) <BR><BR> [42] B. Winkler, C.J. Pickard, V. Milman, G. Thimm. <I>Systematic prediction of crystal structures</I>, CHEMICAL PHYSICS LETTERS <B>337</B> 36 (2001) <BR><BR> [43] J.C. Schoen, M.A.C. Wevers, M. Jansen <I>Prediction of high pressure phases in the systems Li3N, Na3N,(Li,Na)(3)N, Li2S and Na2S.</I>, JOURNAL OF MATERIALS CHEMISTRY <B>11</B> 69 (2001) <BR><BR> [44] B. Winkler, C.J. Pickard, V. Milman, W.E. Klee, G. Thimm <I>Prediction of a nanoporous sp(2)-carbon framework structure by combining graph theory with quantum mechanics.</I>, CHEMICAL PHYSICS LETTERS <B>312</B> 536 (1999) <BR><BR> [45] M.A.C. Wevers, J.C. Schoen, M. Jansen <I>Global aspects of the energy landscape of metastable crystal structures in ionic compounds.</I>, JOURNAL OF PHYSICS-CONDENSED MATTER <B>11</B> 6487 (1999) <BR><BR> [46] S.M. Woodley, P.D. Battle, J.D. Gale, C.R.A. Catlow <I>The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation.</I>, PHYSICAL CHEMISTRY CHEMICAL PHYSICS <B>1</B> 2535 (1999) <BR><BR> [47] F. Cora, D.W. Lewis, C.R.A. Catlow <I>De novo design of microporous transition metal oxides.</I>, CHEMICAL COMMUNICATIONS <B></B> 1943 (1998) <BR><BR> [48] M.A.C Wevers, J.C. Schoen, M. Jansen <I>Determination of structure candidates of simple crystalline AB(2) systems.</I>, JOURNAL OF SOLID STATE CHEMISTRY <B>136</B> 233 (1998) <BR><BR> [49] M. Jansen, J.C. Schoen <I>Structure candidates for the alkali metal nitrides.</I>, ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE <B>624</B> 533 (1998) <BR><BR> [50] M.M.J. Treacy, K.H. Randall, S. Rao, J.A. Perry, D.J. Chadi <I>Enumeration of periodic tetrahedral frameworks.</I>, ZEITSCHRIFT FUR KRISTALLOGRAPHIE <B>212</B> 768 (1997) <BR>