What about U in nanoscale systems?

Location : Zaragoza Scientific Center for Advanced Modeling (ZCAM), CECAM-ES, Zaragoza, Spain
May 21, 2019 – May 24, 2019

State of the art in the ab initio computation of the electronic structure and transport properties of nanoscale junctions consists mainly of density functional theory (DFT) calculations, in combination with the Landauer-Büttiker transport theory [1] or non-equilibrium Green’s functions [2]. However, by construction this mean-field like methodology cannot capture the dynamic correlations originating from strongly interacting and localized electrons, leading e.g. to Kondo and Coulomb blockade physics. In the last decade, DFT based transport calculations, combined with advanced many-body approaches, such as Dynamical Mean-Field Theory (DMFT) [3] paved the road for an ab initio description of strong local electronic correlations in nanoscale junctions. Schemes for treating non-local correlation effects in nanoscale junctions, such as the dynamical vertex approximation have been proposed [4], but have not been implemented yet in an ab initio context.
The description of actual non-equilibrium effects in nanoscale junctions with applied bias voltage requires an out of equilibrium formulation of DMFT [5] and correspondingly an out of equilibrium solution of the Anderson impurity model [6] which up until now have only been achieved on the model level. Moderate local and non-local correlation effects in actual out of equilibrium nanoscale junctions can now be described fully ab initio by a non-equilibrium GW approach [7]. On the other hand, very recently a pure DFT-like approach, called steady-state DFT or i-DFT, has been devised for the calculation of transport properties through nanoscale junctions, capable of describing strong correlations effects such as Coulomb blockade and Kondo physics in out of equilibrium situations [8].
Similar to the case of nanoscale junctions, state of the art for the ab initio description of heterostructures, layered systems in general, surfaces and interfaces mainly relies on DFT calculations of periodic supercells [9]. More recently DMFT and DFT+DMFT schemes for heterostructures, surfaces and interfaces of strongly correlated materials have appeared and have been successfully applied to these kinds of systems [10]. Finally, the latest developments in numerical solver techniques have increased the efficiency of ab initio many-body techniques to a point to make supercells accessible that allow for the theoretical description of correlated materials with defects or vacancies [11].


  • Many-body methods for nanoscale systems
  • Quantum chemistry meets many-body physics
  • Many-body systems out of equilibrium
  • Strong correlations in nanoscale junctions
  • Correlations in bi-dimensional materials
  • Correlations around defects

Practical Information

Application deadline: March 31, 2019

Conference fee: 350€ includes accommodation in Hotel Goya in the city center, meals at the conference site and conference dinner

Arrival: Monday (May-20) afternoon

Workshop start: Tuesday morning (May-21) 

Workshop end: Friday around midday (May-24)



[1] N. D. Lang, PRB 52, 5335 (1995)
[2] J. Taylor et al., PRB 63, 245407 (2001); J. J. Palacios et al., PRB 64, 115411 (2001); M. Brandbyge et al., PRB 65, 165401 (2002)
[3] D. Jacob et al., PRL 103, 016803 (2009); ibid., PRB 82, 195115 (2010)
[4] A. Valli et al., PRL 104, 246402
[5] P. Schmidt and H. Monien, arXiv:cond-mat/0202046, J. K. Freericks et al., Phys. Rev. Lett. 97, 266408 (2006)
[6] C. Gramsch et al., Phys. Rev. B 88, 235106 (2013); G. Cohen et al., Phys. Rev. Lett. 112, 146802 (2014)
[7] K. S. Thygesen, Phys. Rev. B 77, 115333 (2008)
[8] G. Stefanucci and S. Kurth, Nano Lett. 15, 8020 (2015); S. Kurth and G. Stefanucci, Phys. Rev. B 94, 241103(R) (2016) ; arXiv:1706.02753
[9] DFT calculations for layered systems
[10] J. Freericks, “Transport in multilayered nanostructures: the dynamical mean-field theory approach”, World Scientific (2006); P. Hansmann et al., PRL 103, 016401 (2009); F. Lechermann et al., PRB 90, 085125 (2014); H. Chen and A. J. Millis, J. Phys.: Condens. Matter 29, 243001 (2017)
[11] S. Backes et al., Phys. Rev. B 94, 241110(R) (2016); P. Delange et al., Phys. Rev. B 94, 100102(R) (2016); F. Lechermann et al., Phys. Rev. B 93, 121103(R) (2016)


Khaled Dine (Technology faculty – University of Saida )


Thom Aldershof (University of Queensland)


Angelo Valli (invited speaker) (TU Wien)


George Sawatzky (invited speaker) (University of British Columbia, Vancouver)


Robert van Leeuwen (invited speaker) (University of Jyväskylä)


Steffen Backes (invited speaker) (École Polytechnique, Paris, France)
Seydou Mahamadou (Laboratoire ITODYS)


Martin Eckstein (invited speaker) (Universität Erlangen-Nürnberg, Germany)
Katarina Franke (invited speaker) (Freie Universität Berlin, Germany)
Wolfgang Kuch (invited speaker) (Freie Universität Berlin)
Samir Lounis (invited speaker) (Jülich Research Centre)
Michael Sentef (invited speaker) (MPSD CFEL Hamburg)
Tim O. Wehling (invited speaker) (University of Bremen)


Prabhat Ranjan (Manipal University Jaipur)


Andrew K. Mitchell (invited speaker) (University College Dublin, Ireland)


Gianluca Stefanucci (invited speaker) (University of Rome, Tor Vergata, Italy)


Andrea Droghetti (invited speaker) (University of the Basque Country)
Dimitri Efetov (invited speaker) (IFCO, Barcelona)
Stefan Kurth (invited speaker) (Institute for Theoretical Physics, Free University Berlin)
Nahual Sobrino (DIPC / EHU)

United Kingdom

George Booth (invited speaker) (King’s College London)
Ivan Rungger (invited speaker) (National Physical Laboratory)


Emanuel Gull (invited speaker) (University of Michigan, Ann Arbor)
Dominika Zgid (invited speaker) (University of Michigan, Ann Arbor)

Coming soon