Molecular hydrodynamics meets fluctuating hydrodynamics.

May 10, 2015 to May 14, 2015
Location : CECAM-ES, Residencia La Cristalera. Miraflores de la Sierra, Madrid.


  • Ignacio Pagonabarraga (CECAM EPFL, Switzerland)
  • Rafael Delgado-Buscalioni (Autonomous University of Madrid , Spain)
  • Pep Español (National University of Distance Education, Spain)


Universidad Autonoma de Madrid



In the realm of molecular hydrodynamics, we seek two sort of intertwined discussions

-Theoretical: a modern revision of the classic subject of molecular hydrodynamics, and coarse-graining theories, where new scientist are now actively working with physics and mathematical grounds

-Computational: how to implement these theoretical approaches on schemes for fluctuating particle hydrodynamics, including Eulerian-Lagrangian methods using immersed boundaries (finite volume, Lattice Boltzmann) and full-Lagrangian methods (SPH) of colloidal dispersions and polymer solutions.

These discussions will focus on the following problems:

-Translating the dynamics of medium size molecules and their small aggregates in a specific solvent to a hydrodynamic description where the solvent effect is implicit.

-Conceptual approaches that allow for a systematic and consistent derivation of effective potentials and effective friction at different levels of description without loosing connection with macroscopic properties (e.g. intrinsic viscosity).

-Extensions to non-equilibrium states: the interplay between molecular and hydrodynamics effects on flow of nanoparticles (10-100 nm) at finite Peclet number.

Concerning multi-scheme approachs and hybrids. We will focus on different scales micro (Amstrongs to 100nm), meso (100nm-tens of microns) and macro (centimeters to meters).

Some relevant examples are

-Macro: New multi-schemes or hybrid approaches to merge Eulerian-Lagrangian methods (finite volume or LB) with SPH in descriptions of free interfases of fluids with disparate rheology.
-Micro: New ideas to include molecular detail (MD) at specific domains using Adaptive Resolution as the glueing model-interface with other coarse-grained level (including SPH). How to include energy transport. Application to liquid-liquid interfaces (drop coalescence), walls and molecular slippage.
-Meso: Molecular transcription of effective boundary conditions in fluctuating particle hydrodynamics methodologies (wetting, slippage, membranes, etc). Ways to provide new physical roles to Immersed Boundary interpolators in minimally resolved particle models and flexible structures.


[1] K. Mohamed and A. Mohamad, Microfluidics and Nano fluidics 8, 283 (2010).
S. K. Ghosh and T. Pal, Chemical Reviews 107, 4797 (2007).
R. Balasubramanian, J. Xu, B. Kim, B. Sadtler, and A. Wei, Journal of Dispersion Science and Technology 22, 485 (2001).
P. K. Ghorai and S. C. Glotzer, The Journal of Physical Chemistry C 111, 15857 (2007).

[2] Microgel Suspensions: Fundamentals and Applications, Editors: Alberto Fernandez-Nieves , Hans Wyss, Johan Mattsson, David A. Weitz, Wiley (2011)

[3] G.Ali Mansoori, Remediation of asphaltenes and other heavy organic deposits in wells and in pipelines, Socar Proceedings (2010). O.C. Mullins. The Asphaltenes, Annual Review of Analytical Chemistry, Vol. 4: 393-418 (2011)

[4] Timofeeva et al. Nanoscale Research Letters 2011, 6:182

[5] S. J. Marrink et al. The MARTINI force field. J. Phys. Chem. B, 111 (27), 7812 (2007)

[6] W.G. Noid, Systematic methods for structurally consistent coarse-grained models, Methods Mol Biol. 924:487 (2013)

[7] Kjelstrup, Signe; Schnell, Sondre K.; Vlugt, Thijs J.H.; Simon, Jean-Marc; Bardow, Andre; Bedeaux, Dick; Trinh, Thuat. Bridging scales with thermodynamics: from nano to macro. Advances in Natural Sciences: Nanoscience and Nanotechnology, volum 5 (2). (2014)

[8] Dhont "Colloidal hydrodynamics", World Press.

[9] Delong, Steven; Balboa Usabiaga, Florencio; Delgado-Buscalioni, Rafael; Griffith, Boyce E.; Donev, Aleksandar. Brownian dynamics without Green's functions. Journal of Chemical Physics; 140(13) (2014)

[10] I. Pagonabarraga, B. Rotenberg, D. Frenkel, Phys. Chem. Chem. Phys. 12, 9566 (2010)

[11] S. Kumar Kannam, B. D. Todd, J. S. Hansen, and P. J. Daivis, The Journal of
Chemical Physics 136, (2012).

[12] C. Hijon, P. Espanol, E. Vanden-Eijnden, and R. Delgado-Buscalioni, Faraday Discuss. 144, 301 (2010).

[13] D Kauzlaric, J T Meier, P Espanol, A Greine4 and S Succi, Markovian eqs. for Non markovian coarse-graining and properties for graphene blob. New J. Phys. 15 125015

[14] Balboa Usabiaga, F.; Delgado-Buscalioni, R.. Minimal model for acoustic forces on Brownian particles. Physical Review E, 88(6) (2013).
Usabiaga, F.B.; Pagonabarraga, I.; Delgado-Buscalioni, R.. Inertial coupling for point particle fluctuating hydrodynamics. Journal of Computational Physics; 235(0): 701-722 (2013)

[15] M. Bisson, M. Bernaschi, S. Melchionna, S. Succi, Communications in Comp. Phys. 11, 48 (2012)

[16] Adolfo Vazquez-Quesada, Marco Ellero and Pep Espanol, J. Chem. Phys. 130, 034901 (2009)

[17] P.T. Sumesh, I. Pagonabarraga, R. Adhikari, Phys. Rev. E 84, 046709 (2011)

[18] E. Chiavazzo, M. Fasano, P. Asinari, P. Decuzzi, Nature Comm. 5, 3565 (2014)

[19] R. Potesio, Espanol, Rafael Delgado-Buscalioni, Kurt Kremer, Ralf Everaers, and Davide Donadio, Phys. Rev. Lett. 110, 108301 (2013)

[20] G. De Fabritiis, R. Delgado-Buscalioni, and P. V. Coveney, Phys. Rev. Lett. 97, 134501 (2006).

[21] Yaohong Wang, Jon Karl Sigurdsson, Erik Brandt, and Paul J. Atzberger, Dynamic implicit-solvent coarse-grained models of lipid bilayer membranes: Fluctuating hydrodynamics thermostat, Phys. Rev. E 88, 023301 (2013)

[22] Pedro Tarazona, Enrique Chacon, and Fernando Bresme, J. Chem. Phys. 139, 094902 (2013)