Perspectives of many- particle methods: Total energy, spectroscopy and time-dependent dynamics

April 20, 2015 to April 24, 2015
Location : CECAM-DE-MM1P, University of Bremen, Germany


  • Tim O. Wehling (University of Bremen, Germany)
  • Thomas Frauenheim (University of Bremen, Germany)
  • Thorsten KLÜNER (University of Oldenburg, Germany)
  • Johannes Lischner (Imperial College London, United Kingdom)
  • Andreas Savin (University Pierre and Marie Curie, France)




   European Science Foundation


The field of computational chemistry/physics and material science made recently tremendous steps toward a first-principle description of excited state and correlated electronic systems including solids, nanostructures and macromolecular resp. bio-molecular systems. The impact of the applications strongly depend on the underlying methods and the achieved accuracy by accurately treating non-local interactions, electron correlations and time-dependent processes in electronic ground and excited states. This not only concerns accurate total energies and forces but also a quantitative description of spectroscopic signals and related time-dependent electron and coupled electron-ion dynamics. Despite considerable progress in the field various challenges remain to be solved in the future, addressing
• Many-body interactions – new XC functionals
• Perturbation treatment of quasi-particles beyond DFT
• Strong electron correlations, dynamical mean field theory and beyond
• Time-dependent DFT beyond the adiabatic approximation, two particle exitations
Of prime importance is the development of next-generation realistic many-body computational tools which are fast, reliable and are able to describe non-trivial quantum dynamics of complex systems. In order to address these problems, new integrated software tools for realistic quantum simulations of correlated systems need to be developed for a broad scientific community [1]. One possible direction to open new fields of applications is the combination of approaches developed in different communities, which shall be fostered at this workshop.

The proposed workshop should become a forum to brainstorm ideas about solutions to important correlated-electron problems and identify new directions for many-body method development and challenging applications. In this way, we hope to create an exchange mechanism to unite a core of developers in an interactive environment to initiate design of a new generation software tools for many-body quantum modelling of realistic complex systems. The delivery of this technology to a broad community would facilitate breakthroughs on high-impact materials science problems in magnetic nano-science, transitions-metal biophysics and new energy storage.
This workshop brings together people from different correlated electron communities, solid state physics, computational material science and quantum chemistry to discuss a possible synergies and new ideas in quantum many-body methods.
Computational materials sciences are outstanding growth areas of research. In the future an increasingly larger part of our technological development will depend on computer applications, in particular in materials, nano and bio-nano sciences. Ab-initio calculations based on the density functional theory in combination with the dynamical mean-field theory can make a considerable progress in the field of nanostructures with d- and f-elements which usually means strong electron correlations. Moreover, wavefunction-based schemes offering the systematic pathway for approximating the electronic Schrödinger equation will become more and more efficient, so that also highly complex systems will be and are already accessible today. Prospects of method unifications to approach challenging problems such as electron correlations in complex systems, non-local interactions and correlations, dynamics and non-equilibrium phenomena shall be analysed.


[1] G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Electronic structure calculations with dynamical mean-field theory, Rev. Mod. Phys. 78, 865 (2006).
[2] A. Tkatschenko, R. A. DiStasio, R. Car, M. Scheffler, P. Rinke, Phys. Rev. Lett. 108 (2012) 236240.
[3] J. D. Chai, M. Head-Gordon, J. Chem. Phys. 131 (2013) 174105; N. Mardirossian, M. Head-Gordon, J. Chem. Phys. 140 (2014) 18A527
[4] A. V. Arbuznikov, M. Kaupp, J. Chem. Phys. 136 (2012) 014111.
[5] A. Hesselmann und A. Görling J. Chem. Theo. Comput. 9 (2013) 4382; A. Hesselmann und A. Görling Mol. Phys. 109 (2011) 2473.
[6] G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002) .
[7] F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).
[8] M. Rohlfing and S. G. Louie, Phys. Rev. B 62, 4928 (2000).
[9] F. Caruso, P. Rinke, X. Ren, A. Rubio, and M. Scheffler, Phys. Rev. B 88, 075105 (2013).
[10] B.C. Shih, Y. Xue, P. Zhang, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 105, 146401 (2010).
[11] M. Guzzo, G. Lani, F. Sottile, P. Romaniello, M. Gatti, J. J. Kas, J. J. Rehr, M. G. Silly, F. Sirotti, and L. Reining, Phys. Rev. Lett. 107, 166401 (2011).
[12] B. Schweflinghaus, M. dos Santos Dias, A. T. Costa, and S. Lounis, Phys. Rev. B 89, 235439 (2014).
[13] D. Rocca, Y. Ping, R. Gebauer, and G. Galli, Phys. Rev. B 85, 045116 (2012).
[14] D. Neuhauser, Y. Gao, C. Arntsen, C. Karshenas, E. Rabani, and R. Baer, arXiv:1310.5366 (2014).
[15] A. Steinhoff, M. Rösner, F. Jahnke, T. O. Wehling, and C. Gies, Nano Lett. 14, 3743 (2014).

[16] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schönhammer, Rev. Mod. Phys. 84, 299 (2012).
[17] V. I. Anisimov, A. I. Poteryaev, M. A. Korotin-, A. O. Anokhin and G. Kotliar J. Phys. Condens. Matter 9, 7359 (1997); A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 57, 6884 (1998).
[18] P. Sun and G. Kotliar, Phys. Rev. B 66, 085120 (2002); J. M. Tomczak, M. Casula, T. Miyake, F. Aryasetiawan, and S. Biermann, Europhys. Lett. 100, 67001 (2012); R. Sakuma, P. Werner, and F. Aryasetiawan, Phys. Rev. B 88, 235110 (2013); C. Taranto, M. Kaltak, N. Parragh, G. Sangiovanni, G. Kresse, A. Toschi, and K. Held, Phys. Rev. B 88, 165119 (2013).
[19] C. Taranto, S. Andergassen, J. Bauer, K. Held, A. Katanin, W. Metzner, G. Rohringer, and A. Toschi, Phys. Rev. Lett. 112, 196402 (2014); C. Platt, R. Thomale, and W. Hanke, Phys. Rev. B 84, 235121 (2011).
[20] K. Held, Adv. Phys. 56, 829 (2007)
[21] S. Y. Savrasov, G. Kotliar, and E. Abrahams, Nature 410, 793 (2001); I. Leonov, V. I. Anisimov, and D. Vollhardt, Phys. Rev. Lett. 112, 146401 (2014).
[22] A. V. Akimov, O. V. Prezhdo, J. Chem. Theory Comput., 9 (2013) 4959.
[23] W. Ma, Y. Yang, S. Meng, Phys. Chem. Chem. Phys. 15 (2013) 17187.
[24] S. M. Falke, et al. A. Rubio, E. Molinari, C. Lienau, Science 344 (2014) 1001.
[25] Y. Wang, C. Y. Yam, G.H. Chen, T. Frauenheim, T. A. Niehaus, Chem. Physics, 391 (2011) 69.
[26] N. T. Maitra, F. Zhang, R. J. Cave, K. Burke, J. Chem. Phys. 120 (2004) 5932.
[27] Y. Yang, H. van Aggelen, W. Yang, J. Chem. Phys. 139, 224105 (2013).
[28] M.E. Casida, M. Huix-Rotllant, Annu. Rev. Phys. Chem. 63, 287 (2012).
[29] P.M.W. Gill, and H.J. Werner, Explicit-r(12) correlation methods and local correlation methods, Phys. Chem. Chem. Phys. 10, 3318 (2008); W. Liu, M. Hanauer, A. Köhn, Explicitly correlated internally contracted multireference coupled-cluster singles and doubles theory: ic-MRCCSD(F12*), Chem. Phys. Lett. 565, 122 (2013); R. Haunschild, L. Cheng, D. Mukherjee, and W. Klopper, Extension of a universal explicit electron correlation correction to general complete active spaces, J. Chem. Phys. 138, 211101
[30] B. Doser, D.S. Lambrecht, J. Kussmann, C. Ochsenfeld, Linear-scaling atomic orbital-based second-order Moeller-Plesset perturbation theory by rigorous integral screening criteria, J. Chem. Phys. 130, 064107 (2009)
[31] D. Usvyat, L. Maschio, C. Pisano, M. Schuetz, Second-order local Moeller-Plesset perturbation theory for periodic systems: the CRYSCOR code, Z. Phys. Chem. 224, 441 (2010).
[32] F.A. Evangelista, J. Gauss, J. Chem. Phys. 134, 114102 (2011).