Water at interfaces: from proteins to devices

November 29, 2016 to December 2, 2016
Location : CECAM-AT


  • Valentino Bianco (University of Vienna, Austria)
  • Ivan Coluzza (Center for Cooperative Research in Biomaterials, Spain)
  • Barbara Capone (Università degli Studi Roma Tre, Italy)
  • Christoph Dellago (University of Vienna, Austria)



Erwin Schrödinger Institute for Mathematics and Physics


Due to the importance of water in many fields of science among which there are physics, biology, medicine, water treatment, atmospheric science, engineering, there is growing interest towards the behaviour of water at interfaces. Such field of study been largely emphasized in recent publications but, contrary to bulk water, it was subject only lately of few meetings. The goal of this workshop is to gather leading scientists, from a wide spectrum of disciplines ranging from biophysics to material sciences, working on modeling and experimental aspects of water at interfaces and at different length scales. We believe that the state of the art in water modeling is mature to address important applications in the fields aforementioned, hence the timeliness of this meeting is optimal and the location ideal with many local groups working on related problems. A meeting such as the one we propose will be an ideal opportunity to gather scientists, both with a theoretical as well as experimental background, that are interested and willing to discuss different approaches and issues to make an advance in this relevant field. The long term goal of this workshop is to catalyze interdisciplinary collaborations that integrate our knowledge on different length scales and coarse-grain modeling to address the study of large bio-molecular/polymeric systems and of the design of new functionalized materials.

The key points of the workshop that we propose are the following:
1) Importance of water behavior (dynamical properties) close to inorganic interfaces, with emphasis
on the properties of recent filtration membranes applied in water desalination and sanitation.
2) Accurate description of the solvation of bio-molecules. In particular, during the workshop the current problems and future perspectives of water models on both equilibrium and dynamical properties of proteins will be discussed.
3) Current computational and conceptual challenges related to the ice nucleation and ice inhibition materials, important in fields like cryo-preservation of tissues and frozen food storage, among which proteins play an important role that we will highlight in the workshop.

Oral contribution submitted before the 15th of October 2016  will be considered for addition into the program


[1] C. W. Kern and M. Karplus. Water: A Comprehensive Treatise, vol 1, Plenum Press, New York, 1972.
[2] S. Zou, J. S. Baskin and A. H. Zewail. Molecular recognition of oxygen by protein mimics: Dynamics on the femtosecond to microsecond time scale, Proc. Natl. Acad. Sci. USA, 99, 9625–9630, 2002.
[3] G. Franzese and M. Rubi, editors. Aspects of Physical Biology: Biological Water, Protein solutions, Transport and Replication, volume 752 of Lecture Notes in Physics. Springer Berlin / Heidelberg, 2008.
[4] P. Ball. Life’s Matrix: A Biography of Water. Farrar, Straus and Giroux, 2000.
[5] P. G. Debenedetti, Metastable Liquids: Concepts and Principles, Princeton University Press, 1996.
[6] P. G. Debenedetti and H. E. Stanley, Supercooled and glassy water, Phys. Today 56, 40–46, 2003.
[7] P. H. Poole, F. Sciortino, U. Essmann and H. E. Stanley, Phase-behavior of metastable water, Nature 360, 324–328, 1992.
[8] C. A. Angell, Insights into phases of liquid water from study of its unusual glass-forming properties, Science 319, 582–587, 2008.
[9] R. J. Speedy, Limiting forms of the thermodynamic divergences at the conjectured stability limits in superheated and supercooled water, J. Phys. Chem. 86, 3002-3005, 1982.
[10] M. M. Conde, M. A. Gonzalez, J. L. F. Abascal and C. Vega, Determining the phase diagram of water from direct coexistence simulations: The phase diagram of the TIP4P/2005 model revisited, J. Chem. Phys. 139, 154505, 2013.
[11] J. Lu, Y. Qiu, R. Baron and V. Molinero, Coarse Graining of TIP4P/2005, TIP4P-Ew, SPC/E and TIP3P to Monatomic Anisotropic Water models Using Relative Entropy Minimization, J. Chem. Theory Comput. 10, 4104–4120, 2014.
[12] V. Molinero and E. B. Moore, Water modeled as an intermediate element between carbon and silicon, J. Phys. Chem. B, 113, 4008, 2009.
[13] K. Stokely, M. G. Mazza, H. E. Stanley, and G. Franzese, Effect of hydrogen bond cooperativity on the behavior of water, Proc. Natl. Acad. Sci. USA 107, 1301-1306, 2010.
[15] D. T. Limmer and D. Chandler, The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water, Part II, J. Chem. Phys. 138, 214504, 1-15, 2013.
[16] J. C. Palmer, F. Martelli, Y. Liu, R. Car, A. Z. Panagiotopoulos and P. G. Debenedetti, Metastable Liquid-Liquid Transition in a Molecular Model of Water, Nature 510, 385, 2014.
[17] P. Jungwirth, B. J. F.-Pitts and D. J. Tobias. Introduction: Structure and chemistry at aqueous interfaces, Chem. Rev. 106, 1137–1139, 2006.
[18] M. C. Gordillo and J. Martí, Hydrogen bond structure of liquid water confined in nanotubes, Chem. Phys. Lett. 329, 341–345, 2000.
[19] J. Carrasco, A. Hodgson and A. Michaelides, A molecular perspective of water at metal interfaces, Nature Mater. 11, 667–674, 2012.
[20] M. A. Ricci, V. Tudisca, F. Bruni, R. Mancinelli, E. Scoppola, R. Angelini, B. Ruzicka, A.K. Soper, The structure of water near a charged crystalline surface, J Non-Crystal. Solids 407, 418 2015.
[21] O. Mishima, H.E. Stanley, The relationship between liquid, supercooled and glassy water, Nature 396, 329 (1998).
[22] F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino, V. Venuti, L. Liu, C.-Y. Mou, S.H. Chen, Evidence of the existence of the low-density liquid phase in supercooled, confined water, Proc. Natl. Acad. Sci. USA 104, 424, 2007.
[23] R. Mancinelli, F. Bruni, M.A. Ricci, Controversial Evidence on the Point of Minimum Density in Deeply Supercooled Confined Water, J. Phys. Chem. Lett. 1, 1277, 2010.
[24] R. C. Remsing, E. Xi, S. Vembanur, S. Sharma, P. G. Debenedetti, S. Garde and A. J. Patel, Pathways to Dewetting in Hydrophobic Confinement. Proc. Nat'l. Acad. Sci. USA, in press, 2015.
[25] V. Bianco, G. Franzese, Critical behavior of a water monolayer under hydrophobic confinement, Sci. Rep. 4, 4440, 2014.
[26] D. R. Paul, Creating New Types of Carbon-Based Membranes. Science 335, 413, 2012.
[27] Y. Zhang, A. Faraone, W. A. Kamitakahara, K.-H. Liu, C.-Y. Mou, J. B. Leão, S. Chang and S.-H. Chen, Density hysteresis of heavy water confined in a nanoporous silica matrix. Proc. Natl. Acad. Sci. USA 108, 12206, 2011.
[28] A. Soper, Density minimum in supercooled confined water, Proc. Natl. Acad. Sci. USA 47, E1192, 2011.
[29] M. Whitby and N. Quirke, Fluid flow in carbon nanotubes and nanopipes, Nat. Nanotechnol 2, 87, 2007.
[30] S. Han, M. Y. Choi, P. Kumar and H. E. Stanley, Phase transitions in confined water nanofilms, Nat. Phys. 6, 685–689, 2010.
[31] J. Faraudo and F. Bresme, Anomalous Dielectric Behavior of Water in Ionic Newton Black Films, Phys. Rev. Lett. 92, 236102, 2004.
[32] R. Zangi and A. E. Mark, Monolayer Ice, Phys. Rev. Lett. 91, 025502, 2003.
[33] J. M. Alonso, F. Tatti, A. Chuvilin, K. Mam, T. Ondarçuhu and A. M. Bittner, The Condensation of Water on Adsorbed Viruses, Langmuir 29, 14580, 2013.
[34] Y. Fichoua, G. Schirò, F.-X. Gallat, C. Laguri, M. Moulin, J. Combet, M. Zamponi, M. Härtlein, C. Picarth, E. Mossou, H. Lortat-Jacob, J.-P. Colletier, D. J. Tobias and Martin Weik, Hydration water mobility is enhanced around tau amyloid fibers, Proc. Natl. Acad. Sci. USA 112, 6365, 2014.
[35] M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas and A. M. Mayes, Science and technology for water purification in the coming decades, Nature 452, 301-310, 2008.
[36] Health through safe drinking water and basic sanitation, World Health Organization (WHO).
[37] D. Cohen-Tanugi and J. C. Grossman, Water Desalination across Nanoporous Graphene, Nano Letters 12, 3602–3608, 2012.
[38] E. N. Wang and Rohit Karnik, Water desalination: Graphene cleans up water, Nature Nanotechnol 7, 552–554, 2012.
[39] Bruce E. Logan and Menachem Elimelech, Membrane-based processes for sustainable power generation using water, Nature 488, 313–319, 2012.
[40] R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva and A. K. Geim, Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes, Science 335, 442-444, 2012.
[41] R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim and R. R. Nair, Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes, Science 343, 752-754, 2014.
[42] D. W. Boukhvalov, M. I. Katsnelson and Y.-W. Son, Origin of Anomalous Water Permeation through Graphene Oxide Membrane, Nano Letters 13, 3930, 2013.
[43] S. Porada, L. Weinstein, R. Dash, A. van der Wal, M. Bryjak, Y. Gogotsi and P.M. Biesheuvel, Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes, ACS Applied materials and interfaces 4, 1194, 2012.
[44] K. Zhao and H. Wu, Fast Water Thermo-pumping Flow Across Nanotube Membranes for Desalination, Nano Letters 15, 3664, 2015.
[45] K. Daly, J. B. Benziger, A. Z. Panagiotopoulos and P. G. Debenedetti, Molecular Dynamics Simulations of Water Permeation Across Nafion Membrane Interfaces, J. Phys. Chem. B 118, 8798, 2014.
[46] A. Poynor, L. Hong, I. K. Robinson, S. Granick, Z. Zhang and P. A. Fenter, How water meets a hydrophobic surface, Phys. Rev. Lett. 97, 266101, 2006.
[47] S. Granick and S. C. Bae, Chemistry: A curious antipathy for water, Science 322, 1477–1478, 2008.
[48] X. Gao and L. Jiang, Biophysics: Water-repellent legs of water striders, Nature 432, 36–36, 2004.
[49] P. Liu, X. Huang, R. Zhou and B. J. Berne, Observation of a dewetting transition in the collapse of the melittin tetramer, Nature 437, 159162, 2005.
[50] D. M. Huang and D. Chandler, Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding, Proc. Natl. Acad. Sci. USA 97, 8324–8327, 2000.
[51] V. Bianco, S. Iskrov and G. Franzese, Understanding the role of hydrogen bonds on water dynamics and protein stability, J. Biol. Phys. 38, 27–48, 2012.
[52] G. Franzese, V. Bianco and S. Iskrov, Water at interface with proteins, Food Biophys. 6, 186–198, 2011.
[53] M. G. Mazza, K. Stokely, S. E. Pagnotta, F. Bruni, H. E. Stanley and G. Franzese, More than one dynamic crossover in protein hydration water, Proc. Nat'l. Acad. Sci. USA 108, 19873, 2011.
[54] A. Oleinikova, N. Smolin and I. Brovchenko, Influence of Water Clustering on the Dynamics of Hydration Water at the Surface of a Lysozyme, Biophys J. 93, 2986, 2007.
[55] N. V. Nucci, M. S. Pometun and A. J. Wand, Site-resolved measurement of water-protein interactions by solution NMR, Nat. Struct. Mol. Bio. 18, 245, 2011.
[56] P. Ball, Water as an active constituent in cell biology, Chem. Rev. 108, 74–108, 2008.
[57] P. Schmidtke, F. J. Luque, J. B. Murray and X. Barril, Shielded Hydrogen Bonds as Structural Determinants of Binding Kinetics: Application in Drug Design, J. Am. Chem. Soc. 133, 18903–18910, 2011.
[58] I. Coluzza, Transferable Coarse-Grained Potential for Protein Folding and Design, PlosOne, DOI: 10.1371/journal.pone.0112852.
[59] M. Tarek and D. J. Tobias, Role of Protein-Water Hydrogen Bond Dynamics in the Protein Dynamical Transition, Phys. Rev. Lett. 88, 138101, 2002.
[60] T. M. Raschke, Water structure and interactions with protein surfaces, Curr. Opin. Struct. Biol. 16, 152, 2006.
[61] V. Kurkal-Siebert, R. Agarwal J. C. Smith, Hydration-Dependent Dynamical Transition in Protein: Protein Interactions at ≈240  K, Phys. Rev. Lett. 100, 138102, 2008.
[62] V Kurkal-Siebert, R. Agarwal, J. C. Smith, Hydration-dependent dynamical transition in protein: protein interactions at approximately 240 K, Phys. Rev. Lett. 100, 138102, 2008.
[63] S-H Chen, L. Liu, E. Fratini, P. Baglioni, A. Faraone and E. Mamontov, Observation of fragile-to-strong dynamic crossover in protein hydration water, Proc. Natl. Acad. Sci. USA 103, 9012, 2006.
[64] K. Meister, S. Ebbinghaus, Y. Xu, J. G. Duman, A. DeVries, M. Gruebele, D. M. Leitner and M. Havenith, Long-range protein-water dynamics in hyperactive insect antifreeze proteins, Proc. Natl. Acad. Sci. USA 110, 1617, 2013.
[65] R. Iannone, D. I. Chernoff, A. Pringle, S. T. Martin and A. K. Bertram, The ice nucleation ability of one of the most abundant types of fungal spores found in the atmosphere, Atmos. Chem. Phys. 11, 1191, 2011.