Different Routes to Quantum Molecular Dynamics

June 6, 2016 to June 10, 2016
Location : CECAM-HQ-EPFL, Lausanne, Switzerland
   EPFL on iPhone
   Visa requirements


  • Basile Curchod (Durham University, United Kingdom)
  • Michele Ceotto (Università degli Studi di Milano, Italy)
  • Guillermo Albareda (Max Planck for the Structure and Dynamics of Matter, Germany)
  • Ali Abedi (University of Basque Country, Spain)
  • Philipp Marquetand (University of Vienna, Austria)




In June 2015, the participants of a CECAM workshop on Quantum Dynamics expressed a clear will to reinforce the bonds within the community of quantum dynamicists and to establish a visible core group with concerted actions. One of the first measures is the idea of creating a common website on molecular quantum dynamics, which will contain both a description of the available theoretical methods in the field and a link to the available codes. Furthermore, a common set of test systems will be created and made available. This activity was further motivated by the E-CAM initiative. A key aspect to ensure that the community keeps its cohesion is the annual organization of a CECAM workshop, which is the purpose of this proposal. During the last CECAM workshop on Quantum Dynamics, the participants selected the present organizers for the 2016 workshop.

One of the key challenges for the molecular quantum dynamics community is to coordinate the efforts of an important number of subgroups, since each subgroup is currently developing and using specific theoretical methods, without real opportunities to exchange and compare the conceptual ideas. The problems resulting from this fragmentation of the research can be summarized as follows:

1. Formulations of theoretical methods in molecular quantum dynamics are based on different grounds: direct solution of the Schrödinger equation, path integral methods, Bohmian dynamics, semiclassical and classical limits, and empirical algorithms. Hence, different conceptual perspectives or even notations can limit the exchange of ideas between subdomains.
2. Theoretical methods usually target a given type of applications, hampering a direct comparison between the different techniques.
3. With few exceptions, most codes for quantum dynamics are in-house and not directly available to the community.

The proposed workshop will give the following opportunities to tackle each aforementioned issue:

1. Propose general lectures (8 in total) given by senior scientists in the major subdomains of the field: exact numerical methods, path integral molecular dynamics, semiclassical methods, and trajectory-based and trajectory-guided methods. We stress here that these presentations will be pedagogical, with the idea of identifying links between different methods through a discussion following each session.
2. Working groups will be organized to trigger a working atmosphere and to stimulate the exchange between scientists from different subgroups. The idea of the working groups is to go beyond the general discussions and to actually produce some real work, such as the development of general test cases that are common to every technique. Furthermore, we will give the opportunity to young researchers to present their recent research in the framework of the afternoon lectures. These talks will complement the morning sessions and constitute another opportunity to discover common grounds between the different subdomains.
3. The workshop members will examine the advancement of the quantum dynamics webpage and initiate new projects for the upcoming year. One key point would be the creation of standards for input and output files of each individual in-house code to ease comparisons and build common analysis tools.


We would like to highlight the following CECAM school, which will take place the week our workshop in Lausanne:


[1] A. Abedi, N. T. Maitra, E. K. U Gross, Phys. Rev. Lett. 105, 123002 (2010); A. Abedi, F. Agostini, Y. Suzuki, E. K. U. Gross, Phys. Rev. Lett. 110, 263001 (2013); A. Abedi, F. Agostini, E. K. U. Gross, Europhys. Lett. 106, 33001 (2014).

[2] G. Albareda, H. Appel, I. Franco, A. Abedi, A. Rubio, Phys. Rev. Lett. 113, 083003 (2014).

[3] J.C. Light, T. Carrington Jr., Adv. Chem. Phys., 2000; M. J. Bramley and T. Carrington Jr., J. Chem. Phys. 99, 8519 (1993); M. J. Bramley, T. Carrington Jr., J. Chem. Phys. 101, 8494 (1994); R. G. Littlejohn, M. Cargo, T. Carrington Jr., K. A. Mitchell, B. Poirier, J. Chem. Phys. 116, 8691 (2002).

[4] H. D. Meyer, U. Manthe, L. S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990).

[5] U. Manthe, J. Chem. Phys. 128, 164116 (2008); T. Hammer, U. Manthe, J. Chem. Phys. 134, 224305 (2011); H. Wang, M. Thoss. J. Chem. Phys. 119, 1289 (2003).

[6] R. Kapral, G. Ciccotti, J. Chem. Phys. 110, 8919 (1999); S. Nielsen, R. Kapral, G. Ciccotti, J. Chem. Phys. 115, 5805 (2001); R. Kapral, Annu. Rev. Phys. Chem. 57, 129 (2006); S. Bonella, M. Monteferrante, C. Pierleoni, G. Ciccotti, J. Chem. Phys. 133, 164104 ( 2010).

[7] I. Burghardt, H.-D. Meyer, L. S. Cederbaum. J. Chem. Phys. 111, 2927 (1999); G. A. Worth, I. Burghardt, Chem. Phys. Lett. 368, 502 (2003), I. Burghardt, K. Giri, G. A. Worth, J. Chem. Phys. 129, 174104 (2008); G. A. Worth, M. A. Robb, I. Burghardt. Faraday Discus. 127, 307 (2004).

[8] M. Ben-Nun, T. J. Martínez, J. Chem. Phys. 108, 7244 (1998); M. Ben-Nun, J. Quenneville, T. J. Martínez. J. Phys. Chem. A 104, 5161 (2000); M. Ben-Nun, T. J. Martínez. Adv. Chem. Phys. 121, 439 (2002).

[9] J. E. Subotnik, W. Ouyang, B. R. Landry, J. Chem. Phys. 139, 214107 (2013); M. Richter, P. Marquetand, J. González-Vázquez, I. Sola, L. González, J. Chem. Theor. Comput. 7, 1253 (2011); S. Mai, P. Marquetand, L. Gonzélez, Int. J. Quantum Chem., DOI:10.1002/qua.24891 (2015); J. C. Tully, J. Chem. Phys. 93, 1061 (1990); M. Barbatti, WIREs: Comp. Mol. Sci. 1, 620 (2011); E. Tapavicza, I. Tavernelli, U. Rothlisberger, Phys. Rev. Lett. 98, 023001 (2007); B. F. E. Curchod, U. Rothlisberger, I. Tavernelli, Chem. Phys. Chem. 14, 1314 (2013).

[10] T.J. Hele, M.J. Willatt, A. Muolo, S.C. Althorpe, J. Chem. Phys. 142, 191101 (2015); Y. Zhang, T. Stecher, M.T. Cvitas, S.C. Althorpe, J. Phys. Chem. Lett. 5, 3976 (2014); T.J. Hele, S.C. Althorpe, J. Chem. Phys. 138, 084108 (2013); S.C. Althorpe, J. Chem. Phys. 134, 114104 (2011); J. O. Richardson, S.C. Althorpe, J. Chem. Phys. 131, 214106 (2009); M. Ceotto, Mol. Phys. 110, 547 (2011); E. Pollak, J. Phys. Chem B, 116, 12966 (2012); E. Pollak, Chaos 15, 026116 (2005).

[11] W.H. Miller, J. Phys. Chem. A, 105, 2942 (2001); S. Zhang and E. Pollak, J. Chem. Phys. 121 (8), 3384 (2004); M. Ceotto, S. Atahan, G. F. Tantardini, A. Aspuru-Guzik, J. Chem. Phys. 130, 234113 (2009); R. Conte, A. Aspuru-Guzik, M. Ceotto, J. Phys. Chem. Lett. 4, 3407 (2013);K. G. Kay, Annu. Rev. Phys. Chem. 56, 255 (2005); T. Zimmermann and J. Vaníček , J. Chem. Phys. 136, 094106 (2012); F. Grossmann, J. Chem. Phys. 125, 014111 (2006).

[12] I. R. Craig, D. E. Manolopoulos, J. Chem. Phys. 121, 3368 (2004); T. F. Miller, D. E. Manolopoulos, J. Chem. Phys. 123, 154504 (2005); S. Habershon, D. E. Manolopoulos, T. E. Markland, T. F. Miller III, Annu. Rev. Phys. Chem. 64, 387 (2013).

[13] R. E. Wyatt (2005), Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics, Springer; B. F. E. Curchod, I. Tavernelli, U. Rothlisberger, Phys. Chem. Chem. Phys. 13, 3231 (2011); B. F. E. Curchod, I. Tavernelli, J. Chem. Phys. 138, 184112 (2013); I. Tavernelli, Phys. Rev. A 87, 042501 (2013); E. Gindensperger, C. Meier, J.A. Beswick, J. Chem. Phys. 113, 9369 (2000); C. Meier, Phys. Rev. Lett. 93, 173003 (2004); O.V. Prezhdo, C. Brooksby, Phys. Rev. Lett. 86, 3215 (2001); I.P. Christov, J. Chem. Phys. 129, 214107 (2008); N. Zamstein, D.J. Tannor, J. Chem. Phys. 137, 22A517 (2012); N. Zamstein, D.J. Tannor, J. Chem. Phys. 137, 22A518 (2012); S. Garashchuk, D. Dell’Angelo, and V. A. Rassolov, 141, 234107 (2014).

[14] G. Albareda, J. M. Bofill, I. Tavernelli, F. Huarte-Larrañaga, F. Illas, A. Rubio, J. Phys. Chem. Lett. 6, 1529 (2015); X. Oriols, Phys. Rev. Lett. 98, 066803 (2007).