Microswimmers, Self-Propelled Particles, and Active Matter

March 6, 2017 to March 8, 2017
Location : CECAM-HQ-EPFL, Lausanne, Switzerland
   EPFL on iPhone
   Visa requirements


  • Gerhard Gompper (Research Center Jülich, Germany)
  • Eric Lauga (Cambridge University, United Kingdom)
  • Julien Tailleur (CNRS-Université Paris Diderot, Paris, France)




Computer simulations play an essential role in the investigation and understanding of complex non-equilibrium systems such as microswimmers and self-propelled particles, and more general active matter. Self-propulsion, thermal and active noise, hydrodynamic interactions, steric repulsion, and possibly chemical concentration gradients all contribute to the collective dynamics – to name just the most intensively studied contributions. Due to the complexity of the systems and phenomena, different studies have focused on different aspects, for example the hydrodynamic interactions of single microswimmers with surfaces, or the phase behavior and collective behavior of ensembles of self-propelled Brownian spheres. This implies also that many different numerical methods and approaches have been employed.

Thus, the workshop has several important objectives:
(1) Give an overview of the current state of the art and recent developments in a rapidly growing research field.
(2) Address some of the “hot” issues in the field, like the existence of an equation of state in some classes of active suspensions, the importance of hydrodynamic interactions for microswimmers near surfaces, or the importance of hydrodynamic interactions in motility-induced phase separation.
(3) Discuss the advantages and disadvantages of various simulation approaches, in particular mesoscale hydrodynamics techniques, for active systems.
(4) Intensify the contact of simulation science with experimentalists in the field.


[1] L. Rothschild, Nature 198 1221 (1963).
[2] E. M. Purcell, Am. J. Phys. 45 3 (1977).
[3] G. A. Ozin, I. Manners, S. Fournier-Bidoz, and A. Arsenault, Adv. Mater. 17, 3011 (2005).
[4] E. Lauga E and T. R. Powers, Rep. Prog. Phys. 72, 096601 (2009).
[5] T. Vicsek and A. Zafeiris, Phys. Rep. 517, 71 (2012).
[6] J. Elgeti, R. G. Winkler, and G. Gompper, Rep. Prog. Phys. 78, 056601 (2015).
[7] M. E. Cates and J. Tailleur, EPL 101, 20010 (2013)
[8] J. Elgeti and G. Gompper, EPL 109, 58003 (2015)
[9] E. Lauga, W.R. DiLuzio, G.M. Whitesides, and H. A. Stone, Biophys. J. 90, 400 (2006)
[10] J. Elgeti, U. B. Kaupp, and G. Gompper, Biophys. J. 99, 1018 (2010).
[11] K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly and R. E. Goldstein, Proc. Natl. Acad. Sci. USA, 2011, 10940, 108 (2011).
[12] S. E. Spagnolie and E. Lauga, J. Fluid Mech. 700 105 (2012).
[13] I. D. Vladescu, E. J. Marsden, J. Schwarz-Linek, V. A. Martinez, J. Arlt, A. N. Morozov, D. Marenduzzo, M. E. Cates, and W. C. K. Poon, Phys. Rev. Lett. 113, 268101 (2014).
[14] R. Di Leonardo, D. Dell'Arciprete, L. Angelani, V. Iebba, Phys. Rev. Lett. 106, 038101 (2011).
[15] R. Golestanian, J. M. Yeomans, and N. Uchida, Soft Matter 7, 3074 (2011).
[16] J. Elgeti and G. Gompper, Proc. Natl. Acad. Sci. USA 110, 4470 (2013)
[17] A. Peshkov, I. S. Aranson, E. Bertin, H. Chaté, and F. Ginelli, Phys. Rev. Lett. 109, 268701 (2012).
[18] A. Bricard, J.-B. Caussin, N. Desreumaux, O. Dauchot, and D. Bartolo, Nature 503, 95 (2013).
[19] A. Zöttl and H. Stark, Phys. Rev. Lett., 112, 118101 (2014).
[20] R. Rusconi, J. S. Guasto, and R. Stocker, Nature Physics 10, 212 (2014).
[21] X. Garcia, S. Rafai, and P. Peyla, Phys. Rev. Lett. 110, 138106 (2013).
[22] H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E. Goldstein, H. Löwen, and J. M. Yeomans, Proc. Natl. Acad. Sci. USA 109, 14308 (2012)
[23] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger and T. Speck, Phys. Rev. Lett., 110, 238301 (2013).
[24] B. M. Mognetti, A. Šaric, S. Angioletti-Uberti, A. Cacciuto, C. Valeriani and D. Frenkel, Phys. Rev. Lett., 111, 245702 (2013).
[25] I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert and L. Bocquet, Phys. Rev. Lett., 108, 268303 (2012).
[26] X. Yang, M. L. Manning and M. C. Marchetti, Soft Matter, 10, 6477 (2014).
[27] J. Stenhammar, D. Marenduzzo, R. J. Allen and M. E. Cates, Soft Matter 10, 1489 (2014).
[28] Y. Fily, A. Baskaran and M. F. Hagan, Soft Matter, 10, 5609 (2014).
[29] G. S. Redner, M. F. Hagan and A. Baskaran, Phys. Rev. Lett., 110, 055701 (2013).
[30] A. Wysocki, R. G. Winkler and G. Gompper, EPL105, 48004 (2014).
[31] A. P. Solon, J. Stenhammar, R. Wittkowski, M. Kardar, Y. Kafri, M. E. Cates and J. Tailleur, Phys. Rev. Lett., 114, 198301 (2015).
[32] S. C. Takatori, W. Yan and J. F. Brady, Phys. Rev. Lett., 113, 028103 (2014).
[33] J. Tailleur, M. E. Cates, Phys. Rev. Lett. 100, 218103 (2008).
[34] R. Ni, M. A. Cohen Stuart and M. Dijkstra, Nature Commun. 4, 2704 (2013).
[35] L. Berthier and J. Kurchan, Nature Physics 9, 310 (2013).