Computational Studies of Defects in Nanoscale Carbon Materials

May 11, 2009 to May 13, 2009
Location : CECAM-HQ-EPFL, Lausanne, Switzerland
   EPFL on iPhone
   Visa requirements

Modeling of low-dimensional carbon nanostructures: an efficient approach based on chemical criteria


Recently, the properties of nanostructured carbon materials, like carbon nanotubes (CNTs) and graphene, have been the subject of in-depth investigations in view of their potential use in nanotechnology. Most of the interest concerning nanostructured carbon materials is related to the peculiarities of their electronic structure, which is constituted mainly by a complex network of pi-conjugated bonds. Details of the electronic structure play a crucial role in the application of such materials as nanostructured building-blocks for molecular electronics and in functionalization processes, where the CNTs and graphenes undergo chemical reactions[1]. However, the particular structural and electronic features of nanostructured carbon poses significant problems to their computational modeling. Recent studies indicate the extension of classical organic chemistry concepts to the case of low-dimensional nanostructured carbon materials as a successful approach to obtain an accurate and consistent description of the electronic structure of the hexagonal carbon atom network[2-4]. In particular, the application of ideas borrowed from the study of polycyclic aromatic compounds, like Clar's theory of the aromatic sextet, proved markedly effective for the quantitative assessment and the analysis of the properties of nanostructured carbon materials. In this work we apply state-of-the-art numerical techniques to investigations on the stability and on electronic and chemical properties of nanotubes and graphenes and related compounds[4-6]. Our approach is based on the definition of suitable models of the system under study starting from chemical considerations. Results indicate unprecedented accuracy in the prediction of properties for a large variety of systems, obtained at a relatively cheap computational cost.


[1] F. Mercuri, A. Sgamellotti, Inorg. Chim. Acta (2007), 360, 785.
[2] M. Baldoni, A. Sgamellotti, F. Mercuri, Org. Lett. (2007), 9, 4267.
[3] F. Mercuri, Mol. Sim. (2008), 34, 905.
[4] M. Baldoni, A. Sgamellotti, F. Mercuri, Chem. Phys. Lett. (2008), 464, 202.
[5] F. Mercuri, A. Sgamellotti, Phys. Chem. Chem. Phys. (2009), 11, 563.
[6] M. Baldoni, D. Selli, A. Sgamellotti, F. Mercuri, J. Phys. Chem. C (2009), 113, 862.