Combining particle-based and continuum modelling in soft matter physics with ESPResSo, PyStencils, and LbmPy
CECAM-DE-SMSM, Institute for Computational Physics, University of Stuttgart, Stuttgart
Organisers
In this school, participants learn to conduct simulations in the fields of statistical physics, soft matter and active matter using the software ESPResSo. It is an open-source particle-based simulation package with a focus on coarse-grained molecular dynamics models. In addition, it offers a wide range of schemes for solving electrostatics, magnetostatics, hydrodynamics and electrokinetics, as well as algorithms for active matter, rigid bodies, and chemical reactions[1].
ESPResSo consists of an MPI-parallelized simulation core written in C++ and a scripting interface in Python. This allows for good interoperability with other science and visualization tools for Python. ESPResSo can join forces with waLBerla, a high performance code for lattice-Boltzmann hydrodynamics and other lattice-based schemes for electrokinetics and related fields[2].
In this school, after an introduction to particle-based simulations and the simulation codes, we will focus on combining particle- and field-based approaches in simulations of soft matter. We will explore topics such as electrophoretic mobility of colloids, diffusion of polymers, and describing ions on the continuum level via electrokinetic equations.
We will provide an introduction to PyStencils[3] and LbmPy. These Python packages allow for the rapid prototyping of lattice-based algorithms, which can then be used together with waLBerla and ESPResSo. These packages are also used to generate the lattice-Boltzmann and electrokinetics kernels in ESPResSo.
Lectures will provide an introduction to the physics and simulation model building as well as an overview of the necessary simulation algorithms. During the afternoon, participants will practice running their own simulations in hands-on sessions. The teaching material will be provided electronically to the participants.
Many of the lectures and hands-on sessions will be taught by developers of the software. Hence, the school will also provide a platform for discussion between developers and users about the future of the software. Also, users can get advice on their specific simulation projects. The final day of the school will be dedicated to research talks on projects that have been conducted using ESPResSo and waLBerla.
References
Jean-Noël Grad ( University of Stuttgart ) - Organiser
Christian Holm ( University of Stuttgart ) - Organiser
Rudolf Weeber ( University of Stuttgart, Institute for Computational Physics ) - Organiser