Theory and Simulation Methodologies for Small Quantum System Dynamics and Quantum Thermodynamics (QUANTDYNA)
CECAM-HQ-EPFL, Lausanne, Switzerland
Organisers
The field of dynamics of small quantum systems is undergoing a rapid phase of development due to the emergence of new devices based on quantum superposition and coherence (the Second Quantum Revolution [1]). An outstanding scientific and technical challenge in this field is to understand and control the influence of an external environment to the dynamical state and operation of quantum devices coupled to it [2].
To this end it is crucial to model: (i) the thermodynamic behavior of small quantum systems, both isolated and open to the external environment (natural or engineered); (ii) the fluctuation relations that connect thermodynamic quantities such as work and free energy of the device; (iii) effects of the environment beyond weak coupling; (iv) the effect of the environment on strongly-correlated many-body physics and the emergence of new types of physics in open many-body quantum systems.
Currently, there are various isolated communities working on small quantum systems from very different perspectives, including researchers from atomic physics (including cold atom and trapped ion systems), quantum optics and quantum chaos, as well as more recently strongly-correlated theorists who have been turning their attention and applying their tools to many-body open systems. The aim of this workshop is to bring together leading researchers from different backgrounds to cross-fertilize theoretical and numerical methodologies, and to present new results and methodologies to attack and discuss open outstanding problems. In particular, the unique feature here is to bring together experts on methods including Master Equation (Lindblad) and Quantum Langevin Equation approaches [3], Tensor Network Methods [4], Transfer Tensor Methods [5], Dynamical Mean Field Theory [6], and Machine Learning [7] just to mention a few. These originate in different communities ranging from "hard" condensed matter to strongly-correlated systems, atomic physics and quantum thermodynamics.
The invited and contributed talks will cover many theoretical and computational aspects related to open quantum systems and its application to quantum computing, quantum heat engines, and optimal control of quantum systems. We have already verified the participation of key experts in most of the topics and huge support from the different communities.
References
Tapio Ala-Nissila ( Aalto University School of Science and Technology, Finland ) - Organiser
Israel
Bar Lev Yevgeny ( Ben-Gurion University of the Negev, Israel ) - Organiser
Italy
Alberto Imparato ( Politecnico di Torino ) - Organiser
Sweden
Erik Aurell ( Royal Institute of Technology ) - Organiser
United Kingdom
Achilleas Lazarides ( University of Louhborough ) - Organiser