Progress and developments of artificial intelligence for drug design
Location: CECAM-IT-SIMUL, Italian Institute of Technology, Genoa, Italy
Organisers
APPLICATION CLOSED !!!
If you write to us, at this point we are not sure to have extra space. We will do our best to accept more applicants, given the high interest in this event. However, please be aware that we may NOT respond to your application, at this point.
IMPORTANT INFORMATION FOR APPLICANTS:
- THERE IS NO FEE TO ATTEND TO THE WORKSHOP
- WHEN YOU APPLY, PLEASE SPECIFY YOUR AFFILIATION, POSITION, GENDER, AND BRIEFLY EXPLAIN YOUR MOTIVATION TO JOIN US
- SEND US A TITLE AND ABSTRACT, IF YOU PLAN TO PRESENT A POSTER
WE MAY SELECT A FEW POSTERS FOR SHORT ORAL PRESENTATIONS.
PARTICIPANTS WILL BE SELECTED FROM APPLICANTS, AND ACCEPTANCE WILL BE COMMUNICATED BY END OF MARCH.
YOU CAN CHECK IF YOUR NAME ALREADY APPEARS IN THE LIST OF PARTICIPANTS - WHICH MEANS YOU ARE PART OF THE WORKSHOP.
-----------
After decades of incremental innovations in drug design, artificial intelligence (AI) tools have started to show promise revolutionizing the way finding new drug targets, identifying viable chemical starting points, designing efficient synthesis routes and defining novel therapeutic markers for translational studies.
The new concept and the associated technologies have the potential alleviating the numbers game in drug discovery as well as making pharma R&D more efficient by automation In early discovery AI can support finding better drugs against well characterized targets by the analysis and prediction of druggable binding sites and exploitable interactions, as well as for a target deconvolution/identification. Deep learning algorithms can transform screening programs by being taught to design optimized compounds and increase hit rates utilizing the knowledge encoded in large published and proprietary datasets. Further applications involve repositioning and redesign programs that search in the known set of drugs to find pharmacotherapies for new indications.
Medicinal chemistry teams realizes multiple benefits from these tools. In drug design, AI technologies are perfectly suited for solving multidimensional optimization problems that is typically the case in drug discovery settings. In synthetic chemistry, deep learning can suggest viable alternatives how to best synthesize the designed compounds. Optimization of chemical reactions using contributes to provide the best compound at the best time that might deliver lower attrition rates as compounds move through the pharma value chain. The efficiency of these processes are often enhanced by automated technologies in both synthesis and testing that provides a previously unseen amount of data feeding and improving AI-based design technologies. Finally, AI technologies have significant impact on clinical research. Its advancement to the clinical trials results the process faster, cutting costs, improving trial quality, and reducing trial times. Finding disease biomarkers and gene signatures support recruiting eligible clinical trial patients and opens new perspectives in personalized therapies. The present workshop covers the key areas of AI driven drug discovery including the theory and practice in target identification, hit finding, drug design and synthetic chemistry.
References
György M Keseru (Research Center for Natural Sciences) - Organiser
Italy
Marco De Vivo (Istituto Italiano di Tecnologia) - Organiser
Sweden
Jonas Boström (AstraZeneca) - Organiser
United Kingdom
Darren Green (GlaxoSmithKline) - Organiser